Datasetoids: generating more data for empirical data analysis studies
26/05/2009 Tuesday 26th May 2009, 16:30 (Amphitheatre Pa2, Mathematics Building)
More
Carlos Soares, Faculdade de Economia, Universidade do Porto
With the increase in the number of models induced from data that are used by organizations for decision support, the problem of algorithm (and parameter) selection is becoming increasingly important. Two approaches to obtain empirical knowledge that is useful for that purpose are empirical studies and metalearning. However, most empirical (meta)knowledge is obtained from a relatively small set of datasets. In this paper, we propose a method to obtain a large number of datasets which is based on a simple transformation of existing datasets, referred to as datasetoids. We test our approach on the problem of using metalearning to predict when to prune decision trees. The results show significant improvement when using datasetoids. Additionally, we identify a number of potential anomalies in the generated datasetoids and propose methods to solve them.
|