Métodos robustos en Análisis Multivariado
08/02/2002 Friday 8th February 2002, 14:30 (Room P3.10, Mathematics Building)
More
Ricardo Maronna, Universidad Nacional de La Plata
Los métodos mas usuales en Análisis Multivariado (como Componentes Principales y Análisis Discrimimante) requieren un vector de posición y una matriz de dispersión. El vector de medias y la matriz de covarianzas muestrales, que son los estimadores de posición y dispersión usados habitualmente, tienen el inconveniente de que unas pocas observaciones atípicas pueden alterar completamente los resultados. Las observaciones atípicas pueden no ser visibles en ninguna de las coordenadas. Los métodos robustos no son afectados cuando hay algunos datos atípicos, y son semejantes a las medias y covarianzas cuando no los hay. Los principales enfoques para este problema son: estimadores de máxima verosimilitud generalizados, estimadores que minimizan una escala robusta de las distancias de Mahalanobis, y estimadores basados en proyecciones. El cálculo numérico de los estimadores es un aspecto importante, ya que el tiempo de cómputo aumenta rápidamente con la cantidad de variables. Se compararán las virtudes y defectos de los distintos enfoques y se mostrarán algunas aplicaciones.
|