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Abstract

We describe a Stokesian (slow viscous) flow model for producing interacting deformable sur-
faces. This captures several phenomena in their nativity, such as cell membranes interacting, or soft
docking of flexible molecules, etc. Starting from any initial configuration of closed, compact ”inter-
faces”, the interfaces are continually evolved, as well as deformed based on the relative viscosities
and the interfacial tension. The velocity computation and the interfacial dynamics are achieved via
a Boundary Element formulation of the governing Stokesian flow equation, while the interface evo-
lution and topology maintenance utilizes level set representation and underlying function updates.
Effects such as coalescence, break-up, and additional nearinterface interactions, can also be accu-
rately captured. These last three effects in particular require adaptive refinement of meshed geometry
and controlled coupling of the numerical errors in computation to yield topologically realistic looking
phenomological modeling.

1 Introduction

We present a technique to model the interaction of deformable surfaces using two-phase Stokesian (slow
viscous) flows. These interfaces can represent air bubbles in a viscous liquid, oil droplets in a suspension,
or cellular membranes subjected to hydrodynamics forces.

Two-phase fluid simulations have been a topic of interest in computer graphics. In [5] Foster and
Metaxas describe a technique for simulating free-surface water flows by solving the full Navier-Stokes
equations in three dimensions via a finite difference schemeand representing the free surface with mass-
less marker particles. In [4] Foster and Fedkiw implement a solution to the full Navier-Stokes equations
using a modified version of the semi-Lagrangian technique introduced by Stam in [10] to capture the
complex behavior of free water surfaces. To represent the air-water interface, they used a level set method
as introduced in [9]. In [3] a particle level set method was introduced for improved interface capturing.
Massless marker particles are advected with the level set data and used to repair the level set in regions
of degradation due to the use of a coarse grid for animation. The combination of a semi-Langrangian
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Navier-Stokes solver coupled to a particle based level set method allows for complex modeling of the
dynamics at the air-water interface. In all of the above treatments, the density of the air is assumed to
be zero. This is a reasonable approximation as the density ofair is 1000 times less than that of water.
A constant pressure boundary condition is applied everywhere at the interface and the Navier-Stokes
equations are solved only within the liquid region. Using these techniques, while visually realistic sim-
ulations can be achieved which capture the convective (and turbulent) interaction of gases and liquids,
many interesting features of air-water interfacial dynamics arising from non-convective, non-turbulent,
and slow viscous flows cannot be observed. These interfacialdeformations and dynamics arise from
interfacial tension and the curvature of the interface. In order to capture such interfacial deformations
in a simulation, for even visual realism, the Navier-Stokesequations must be accurately solved in both
fluid regions, and pressure boundary conditions must be applied at the two phase fluid interface, while
carefully orchestrating the accuracy of interfacial geometry and the interfacial velocities. Such an accu-
rate two phase fluid simulation to produce realistic visual animations of deforming interfaces, is the main
contribution of this paper.

In [7], Hong and Kim with perhaps similar goals to ours, modified the semi-Lagrangian scheme [10]
coupled with the volume-of-fluid method (VOF) introduced in[6] to simulate bubbles in liquids. The au-
thors calculate the interfacial tension, and thereby are able to capture certain interfacial deformations, the
VOF method has accuracy limitations for effects such as bubble flattening, coalescence, bubble necking,
and break-up, and additional subtle near bubble interaction. We achieve this accuracy through our pre-
cise representation of the interface geometry, coupled to atopology tracking technique and a stable and
accurate boundary element fluid solver, allowing us to observe these phenomena at significantly higher
resolution. Our solution can be broken down into three main sub-areas: accurate boundary element mesh
representation of the interface, careful error bounded calculation of physical quantities (velocities, sur-
face tension) on the interface by regularization and adaptive mesh refinement, and topological tracking
for precise near-bubble interactions.

For the calculation of physical quantities we use the boundary element method (BEM) on adaptive
geometries. Given an initial configuration of bubbles, our adaptive BEM solver, estimates the veloci-
ties on the interfacial boundary with greater accuracy, dueto several advantages it has over competing
methods. It reduces the dimensionality of the problem by one, and focuses computational effort on the
boundary which, for two phase simulations, is the region of interest thereby yielding superior accuracy
of the BEM over both finite element methods (FEM) and finite difference methods (FDM), where the
interface is represented indirectly using a discretized volume domain.

We also present a dynamic remeshing algorithm for smooth evolving interfaces of an objects such as
bubbles. The interface is discretized to triangular or quadrilateral mesh where the velocity of each vertex
is computed by the BEM. Since an interface changes its geometric shape including surface area and
curvature distribution, meshes with fixed vertex count and connectivity cannot represent the evolving
interfaces accurately. Therefore, the number of vertices and vertex connectivity need to be adjusted
according to given geometric properties of an interface foreach timestep. The quality of triangular or
quadrilateral elements, often measured with element shape, also needs to be good enough for accurate
BEM calculation. The main difficulty occurs when the topology of interfaces change. For instance,
two bubbles may coalesce or a single bubble may break up into two bubbles. We utilize up-sampling /
down-sampling methods and maintain a dynamic octree for tracking and controlling the mesh topology.
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2 Deformable Interfaces

A sketch of our method of accurate two-phase simulations is below. Details of each individual computa-
tional step is given in [1].
Algorithm Sketch

1. Initial interface : specify an initial configuration and level set representation of bubbles, as well
as initialize the fluid physical parameters

2. Interface parametrization : quality mesh extraction for the level set

3. Interfacial velocity computation : use an accurate BEM to calculate interfacial velocities and
analyze its associated errors

4. Oracle : check topology change condition through the Oracle and modify underlying functions
that define the bubble interface. This process involves channel identification and modification of
interfaces.

5. Interface evolution : evolve the interface using a level set method

6. Interference check : check geometric interference and adjust timestepping, goback to mesh
extraction and BEM calculation for continuing the simulation.

2.1 Initialization of bubbles

Initial geometry data is specified and given as inputs to the boundary element solver. The sign distance
field to the given initial geometry is computed using an implicit C2 cubic B-Spline level set function
[2]. Further normals and curvatures of the interfaces are then estimated from this piecewise analytic
representation.

2.2 Stokes flow and boundary integral equations

Let us denoteρ as the fluid density,µ as the fluid viscosity,u as the fluid velocity field,p as the fluid
pressure. In addition, letg represent some external field, such as gravity, that acts on the fluid. The full
Navier-Stokes equations for incompressible flow are given by, ρ(∂u

∂ t +u ·∇u) = −∇p+ µ∇2u+ρg, and
∇ ·u = 0. By specializing to flows with low Reynolds number and low acceleration parameter we ignore
the inertial and convective terms in the momentum equation.In this limit, viscous forces dominate and we
have a linearized version of the Navier-Stokes equations called Stokes equation,−∇p+ µ∇2u+ ρg = 0

Our choice of numerical solution technique requires that wereformulate the governing equations as
integral equations over the boundary interfaces. Since we are interested in updating the interface between
the two fluids we only need an integral relation for the interfacial velocity. The most general expression
for the velocity at a pointx0 on a bubble interfaceΓ is given by [14],

uk(x0) =
1

4π
1−λ
1+ λ

∫

Γ
ui(x)Ti jk(x,x0)n̂k(x)dΓ(x)+ Fj(x0) (2.1)
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Fj(x0) =
2

1+ λ
(u∞

j (x0)−
1

8πµs

∫

Γ
f (x)n̂i(x)Gi j(x,x0)dΓ(x)) (2.2)

2.3 Numerical Technique

In the above relations we assume N bubbles with varying viscosities immersed in a Stokes fluid. The
viscosity ratio of the bubble to the fluid it is embedded in is,λ = µ

µs
, andu∞

j is the asymptotic Stokes
velocity that the bubbles are immersed in. The functionf is the boundary condition specifying the
pressure difference at the interface and is given by,f = 2γκ + (ρ f luid − ρbubble)z. In the above,γ is
the surface tension of the drop, ˆn is the normal pointing into the suspending fluid andκ = 1

2∇ · n is the
extrinsic mean curvature of the boundary. For our calculations we use the free space Green’s functions
for Stokes flow given by,

Gi j(x− x0) =
δi j

r
+

x̂ix̂ j

r3 , x̂ = x− x0

and

Ti jk(x− x0) = −6
x̂ix̂ jx̂k

r5

We generate a quadrilateral mesh from our B-spline level setapproximation[11], to represent the
interface separating the two fluids and discretize the integral equation. We break up the integrals over
each surface into a sum of integrals over each quadrilateralface of the mesh. The integration over most
faces may be done using standard quadrature techniques. However, the Green’s functions appearing in
these expressions show divergent behavior as the evaluation point approaches the surface over which we
are integrating. These singular and near-singular integrals must be handled carefully in order to obtain
accurate results from a BEM when two droplets are close. Details are given in [1].

2.4 Error Analysis

Proper error analysis is important for our algorithm. We usethis information to determine the validity
of the boundary element calculation and how to improve it by surface mesh refinement. We describe
two different error tools that we use for feedback during thesimulation. The first one is a global error
measure and derives from the incompressibility condition of the governing equations we are using to
model the fluids. This condition in integral form becomes,

∫

Γ
u · n̂dΓ = 0 (2.3)

We calculate this value and use it to determine which octree level to mesh the geometry for each timestep.
The other method we implement is a local measure of the error.We use bilinear interpolation when
calculating values on the surface from the values at the vertices which were obtained through solving the
boundary element system. We implement a technique to estimate the error at each face of the mesh and
add more geometry if the error is outside acceptable tolerance. The error analysis implemented is that
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of [8]. The technique is chosen based on computational speedand ease of implementation. The error on
them-th face is estimated to be

Eu(m)2 =

∫

Γm

| u0− û |2 dΓm (2.4)

whereu0 is the predicted exact solution which we approximate by higher order interpolation and ˆu is the
numerical solution for the velocity. Finally we measure therelative error by calculating,

Erel,u(m)2 =
Eu(m)2

∫
Γ | u0 |2 dΓ

(2.5)

While rigorous mathematical bounds do not exist for local errors in collocation methods this technique
serves its purpose in quantifying the error regions of sparse geometry where the calculation could be
improved and have been implemented by authors in boundary element methods as well as finite element
methods [12] [13]. This error analysis is done at each time step following the boundary element calcu-
lation of the interfacial velocities. Given a user defined toleranceε1 > 0 we check that the velocity error
computed over each face of the mesh satisfyErel,u < ε1. If this condition is satisfied then we proceed
with the interface evolution. If it is not satisfied then we refine the faces of the mesh where the tolerance
is exceeded and recalculate the interfacial velocities using this refined mesh.

2.5 Topology Control

Assumef t is a function at timet where its level set represents deformable interfaces.f̂ t is a piecewise
trilinear function that approximatesf t . Mt is a mesh that approximates the level set. The level set
topology defined in̂f t is preserved during mesh extraction process.

Boundary Element Method (BEM) is applied to computing velocities which can be used for updating

the function f̂ t at timet to evolve the interface in viscous flows. This generates the function f̂ t+1 at time
t, where level set meshMt+1 can be extracted.

Topology changes of bubbles may occur under various conditions such as minimum distance or con-
tact surface area between two bubbles. The moment of topology changes can be also chosen manually.
We introduce anoracle that is an independent procedure to decide whether the topology change occurs
or not based on the user-specified conditions. We also need a remeshing procedure to actually change
the topology of meshes for the bubbles if the oracle decides that. Our algorithms for the oracle and
remeshing support coalescence and breakup of bubble interfaces. Details are given in [1].

2.6 Interface Update

The interface is updated using our higher order level set method [2]. The evolution of the level set is
governed by the level set equation,

∂ϕi

∂ t
+

⇀v ·∇ϕi = 0
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(a) t = 1 (b) t = 40 (c) t = 51

(d) t = 66 (e) t = 100 (f) t = 200

Fig 3.1: Bubble coalescence. Several timesteps are shown here depicting bubble coalescence. Bubbles
don’t tend to coalesce easily in pure Stokes flow. For the simulation a term was added to the fluid solver
to simulate the intermolecular forces at work that cause coalescence. We see that the bubbles tend to
flatten out as they approach each other. A sudden joining occurs after they have been in close proximity
for enough time. The joined bubble returns to a spherical shape due to surface tension.

3 Results

3.1 Implementation

We have an implementation of the above technique that runs ona Linux platform. The implementation
consists of two main libraries: a meshing library, and a boundary element calculation library. These
two sets of code are packaged in a graphical user interface where initial data can be input and physical
parameters are defined. The package is also capable of outputting mesh data for analysis and rendering.

Figure 3.1 shows results of a simulation of two bubbles coalescing. The input data are two uniform
spheres separated by a small distance. The viscosity ratio is λ = 0.5 and a small gravity field is enabled
so that the bubbles rise slightly due to buoyant forces. There is no asymptotic flow in the suspending
fluid. The simulation shows that bubbles tend to exist in a flattened state before intermolecular forces
take over and the bubbles ultimately join.

Figure 3.2 shows two droplets deforming as they pass each other in a shearing flow given byu∞ =
(γz,0,0) whereγ is a user defined parameter that controls the strength of the flow that can be used to
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(a) t = 1 (b) t = 20 (c) t = 30

Fig 3.2: Bubbles deforming in shear flow. This simulation shows bubbles deforming as they move past
each other in a shearing flow. The viscosity ratio for the simulation is 0.5 and a small gravity field is
applied to make the bubbles rise slightly. The shear flow is keyframed to slowly dissipate. We observe
the shearing and deformations as the bubbles interact and then return to their spherical shapes as the
speed of the flow decreases.

control the strength of the field. For this animation we setγ = 1 and add a small gravity field. We observe
the bubbles slowly rising and moving past each other. As the lower bubble rises it begins to move to the
right as it moves to a height where the asymptotic flow is positive. The flow is keyframed to gradually
dissipate over the coarse of the simulation and we see the bubbles slow down and return to their spherical
shapes.

Within our simulations there are several parameters which may be adjusted to create a desired sim-
ulation based animation. The user can specify an initial configuration of droplets and a Stokes flow
to embed the droplets in. This flow has parameters which control the speed and variation in the pres-
sure gradient along the different spatial axes. In addition, the strength of the gravity field or other long
range body forces may also be specified by the user and short range forces may be added to simulate
intermolecular interactions. Adjustment of these parameters leads to very different results.

The viscosity ratio parameter is particularly important. As a special case we setλ = 1 in the boundary
integral equation eliminating the integral over the doublelayer potential. The result is that there is no
linear system to solve so interfacial velocities are computed simply by evaluating,

uk(x0) =
2

1+ λ
(u∞

j (x0)−
1

8πµs

∫

Γ
f (x)n̂i(x)Gi j(x,x0)dΓ(x))

It should be noted that all phenomena of bubble interactionsmentioned here can be observed in this
special case, but the computational demands are much less than theλ 6= 1 solution.
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