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Abstract

We describe a Stokesian (slow viscous) flow model for prattyaiteracting deformable sur-
faces. This captures several phenomena in their nativith as cell membranes interacting, or soft
docking of flexible molecules, etc. Starting from any iditanfiguration of closed, compact "inter-
faces”, the interfaces are continually evolved, as wellefsrined based on the relative viscosities
and the interfacial tension. The velocity computation dredihterfacial dynamics are achieved via
a Boundary Element formulation of the governing Stokesiew #quation, while the interface evo-
lution and topology maintenance utilizes level set repregt@n and underlying function updates.
Effects such as coalescence, break-up, and additionalmtediace interactions, can also be accu-
rately captured. These last three effects in particularire@daptive refinement of meshed geometry
and controlled coupling of the numerical errors in comgateto yield topologically realistic looking
phenomological modeling.

1 Introduction

We present a technigue to model the interaction of deforensilnifaces using two-phase Stokesian (slow
viscous) flows. These interfaces can represent air bubibkesiscous liquid, oil droplets in a suspension,
or cellular membranes subjected to hydrodynamics forces.

Two-phase fluid simulations have been a topic of interesbmputer graphics. In [5] Foster and
Metaxas describe a technique for simulating free-surfaatemflows by solving the full Navier-Stokes
equations in three dimensions via a finite difference schemderepresenting the free surface with mass-
less marker particles. In [4] Foster and Fedkiw implemeradlat®n to the full Navier-Stokes equations
using a modified version of the semi-Lagrangian technigqtmdiiced by Stam in [10] to capture the
complex behavior of free water surfaces. To represent theaer interface, they used a level set method
as introduced in [9]. In [3] a patrticle level set method wasdduced for improved interface capturing.
Massless marker particles are advected with the level satagtel used to repair the level set in regions
of degradation due to the use of a coarse grid for animatidre cbmbination of a semi-Langrangian



Navier-Stokes solver coupled to a particle based level sthod allows for complex modeling of the
dynamics at the air-water interface. In all of the abovetineats, the density of the air is assumed to
be zero. This is a reasonable approximation as the densiéiy &f 1000 times less than that of water.
A constant pressure boundary condition is applied everyavhe the interface and the Navier-Stokes
equations are solved only within the liquid region. Usinggh techniques, while visually realistic sim-
ulations can be achieved which capture the convective (afilent) interaction of gases and liquids,
many interesting features of air-water interfacial dynesrarising from non-convective, non-turbulent,
and slow viscous flows cannot be observed. These interfdefarmations and dynamics arise from
interfacial tension and the curvature of the interface. rieo to capture such interfacial deformations
in a simulation, for even visual realism, the Navier-Stokgsations must be accurately solved in both
fluid regions, and pressure boundary conditions must bdesbat the two phase fluid interface, while
carefully orchestrating the accuracy of interfacial getsynand the interfacial velocities. Such an accu-
rate two phase fluid simulation to produce realistic visumarations of deforming interfaces, is the main
contribution of this paper.

In [7], Hong and Kim with perhaps similar goals to ours, maatifthe semi-Lagrangian scheme [10]
coupled with the volume-of-fluid method (VOF) introduced6ihto simulate bubbles in liquids. The au-
thors calculate the interfacial tension, and thereby aletalrapture certain interfacial deformations, the
VOF method has accuracy limitations for effects such as leutdittening, coalescence, bubble necking,
and break-up, and additional subtle near bubble intemactide achieve this accuracy through our pre-
cise representation of the interface geometry, coupledapa@logy tracking technique and a stable and
accurate boundary element fluid solver, allowing us to alesdrese phenomena at significantly higher
resolution. Our solution can be broken down into three malnareas: accurate boundary element mesh
representation of the interface, careful error boundedutation of physical quantities (velocities, sur-
face tension) on the interface by regularization and adaptiesh refinement, and topological tracking
for precise near-bubble interactions.

For the calculation of physical quantities we use the bogndement method (BEM) on adaptive
geometries. Given an initial configuration of bubbles, odaive BEM solver, estimates the veloci-
ties on the interfacial boundary with greater accuracy, touseveral advantages it has over competing
methods. It reduces the dimensionality of the problem by and focuses computational effort on the
boundary which, for two phase simulations, is the regiomidriest thereby yielding superior accuracy
of the BEM over both finite element methods (FEM) and finitéedé#nce methods (FDM), where the
interface is represented indirectly using a discretizddrme domain.

We also present a dynamic remeshing algorithm for smootlviegpinterfaces of an objects such as
bubbles. The interface is discretized to triangular or gletdral mesh where the velocity of each vertex
is computed by the BEM. Since an interface changes its gemnsttape including surface area and
curvature distribution, meshes with fixed vertex count aodnectivity cannot represent the evolving
interfaces accurately. Therefore, the number of vertices \&ertex connectivity need to be adjusted
according to given geometric properties of an interfaceefeh timestep. The quality of triangular or
quadrilateral elements, often measured with element sleg® needs to be good enough for accurate
BEM calculation. The main difficulty occurs when the topologf interfaces change. For instance,
two bubbles may coalesce or a single bubble may break upwadotibbles. We utilize up-sampling /
down-sampling methods and maintain a dynamic octree fokitng and controlling the mesh topology.



2 Deformable Interfaces

A sketch of our method of accurate two-phase simulationglis/ Details of each individual computa-
tional step is given in [1].
Algorithm Sketch

1. Initial interface : specify an initial configuration and level set represeatabf bubbles, as well
as initialize the fluid physical parameters

2. Interface parametrization : quality mesh extraction for the level set

3. Interfacial velocity computation : use an accurate BEM to calculate interfacial velocitied an
analyze its associated errors

4. Oracle : check topology change condition through the Oracle andifjmwathderlying functions
that define the bubble interface. This process involves mladentification and modification of
interfaces.

5. Interface evolution : evolve the interface using a level set method

6. Interference check: check geometric interference and adjust timesteppingbagk to mesh
extraction and BEM calculation for continuing the simudati

2.1 Initialization of bubbles

Initial geometry data is specified and given as inputs to thendary element solver. The sign distance
field to the given initial geometry is computed using an imiplC? cubic B-Spline level set function
[2]. Further normals and curvatures of the interfaces aea #stimated from this piecewise analytic
representation.

2.2 Stokes flow and boundary integral equations

Let us denotep as the fluid densityu as the fluid viscosityu as the fluid velocity fieldp as the fluid
pressure. In addition, lef represent some external field, such as gravity, that actseofiuid. The full
Navier-Stokes equations for incompressible flow are gi\aerpb% +u-0u) = —Op+ uC?u+ pg, and
[0-u= 0. By specializing to flows with low Reynolds number and loweleration parameter we ignore
the inertial and convective terms in the momentum equatiothis limit, viscous forces dominate and we
have a linearized version of the Navier-Stokes equatioledc&tokes equation; Op+ pJ?u+ pg =0

Our choice of numerical solution technique requires thatefermulate the governing equations as
integral equations over the boundary interfaces. Sincesmterested in updating the interface between
the two fluids we only need an integral relation for the irdgerdl velocity. The most general expression
for the velocity at a poinkg on a bubble interfacE is given by [14],
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2.3 Numerical Technique

In the above relations we assume N bubbles with varying sities immersed in a Stokes fluid. The
viscosity ratio of the bubble to the fluid it is embedded inAis= ﬁ andu?’ is the asymptotic Stokes
velocity that the bubbles are immersed in. The functiors the boundary condition specifying the
pressure difference at the interface and is givenfby; 2yk + (pfUd — pbubbley7 |n the abovey is

the surface tension of the dropjs'the normal pointing into the suspending fluid ane- %D -nis the
extrinsic mean curvature of the boundary. For our calcaative use the free space Green’s functions
for Stokes flow given by,
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T(x—%0) = —6=-%

We generate a quadrilateral mesh from our B-spline levehpptoximation[11], to represent the
interface separating the two fluids and discretize the rategguation. We break up the integrals over
each surface into a sum of integrals over each quadrildi@eeal of the mesh. The integration over most
faces may be done using standard quadrature techniquesevidgwhe Green’s functions appearing in
these expressions show divergent behavior as the evalyadiot approaches the surface over which we
are integrating. These singular and near-singular inkegnaist be handled carefully in order to obtain
accurate results from a BEM when two droplets are close.iBetee given in [1].

2.4 Error Analysis

Proper error analysis is important for our algorithm. We tée information to determine the validity
of the boundary element calculation and how to improve it inface mesh refinement. We describe
two different error tools that we use for feedback duringghmsulation. The first one is a global error
measure and derives from the incompressibility conditibthe governing equations we are using to
model the fluids. This condition in integral form becomes,
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We calculate this value and use it to determine which oceresl ko mesh the geometry for each timestep.
The other method we implement is a local measure of the el .use bilinear interpolation when

calculating values on the surface from the values at thécesrtvhich were obtained through solving the
boundary element system. We implement a technique to dstithha error at each face of the mesh and
add more geometry if the error is outside acceptable toteramhe error analysis implemented is that



of [8]. The technique is chosen based on computational speg@@ase of implementation. The error on
them-th face is estimated to be

Ey(m)? :/r - a2 drm (2.4)

wherel? is the predicted exact solution which we approximate by éigitder interpolation andi$ the
numerical solution for the velocity. Finally we measure thkative error by calculating,
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While rigorous mathematical bounds do not exist for locabier in collocation methods this technique
serves its purpose in quantifying the error regions of spgeometry where the calculation could be
improved and have been implemented by authors in boundanyegit methods as well as finite element
methods [12] [13]. This error analysis is done at each tirap fllowing the boundary element calcu-
lation of the interfacial velocities. Given a user defindétances; > 0 we check that the velocity error
computed over each face of the mesh satisfy, < ;. If this condition is satisfied then we proceed
with the interface evolution. If it is not satisfied then wéme the faces of the mesh where the tolerance
is exceeded and recalculate the interfacial velocitiesguiis refined mesh.

2.5 Topology Control

Assumef! is a function at time where its level set represents deformable interfadess a piecewise
trilinear function that approximate$!. M! is a mesh that approximates the level set. The level set
topology defined inft is preserved during mesh extraction process.

Boundary Element Method (BEM) is applied to computing véies which can be used/fgr updating
the functionft at timet to evolve the interface in viscous flows. This generatestuhetfon ft+1 at time
t, where level set mesk'*! can be extracted.

Topology changes of bubbles may occur under various comditsuch as minimum distance or con-
tact surface area between two bubbles. The moment of topalognges can be also chosen manually.
We introduce aroracle that is an independent procedure to decide whether thedagpahange occurs
or not based on the user-specified conditions. We also neech@shing procedure to actually change
the topology of meshes for the bubbles if the oracle decidats tOur algorithms for the oracle and
remeshing support coalescence and breakup of bubbledoéstf Details are given in [1].

2.6 Interface Update

The interface is updated using our higher order level sehatef2]. The evolution of the level set is
governed by the level set equation,
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Fig 3.1: Bubble coalescence. Several timesteps are showrdkeeicting bubble coalescence. Bubbles
don't tend to coalesce easily in pure Stokes flow. For the Isitimimn a term was added to the fluid solver
to simulate the intermolecular forces at work that causdéescance. We see that the bubbles tend to
flatten out as they approach each other. A sudden joiningreadter they have been in close proximity
for enough time. The joined bubble returns to a sphericgbesluie to surface tension.

3 Results

3.1 Implementation

We have an implementation of the above technique that rursslonux platform. The implementation
consists of two main libraries: a meshing library, and a lolauy element calculation library. These
two sets of code are packaged in a graphical user interfaeeewhitial data can be input and physical
parameters are defined. The package is also capable of ingpuiesh data for analysis and rendering.

Figure 3.1 shows results of a simulation of two bubbles mattgy. The input data are two uniform
spheres separated by a small distance. The viscosity satie-i0.5 and a small gravity field is enabled
so that the bubbles rise slightly due to buoyant forces. &lgeno asymptotic flow in the suspending
fluid. The simulation shows that bubbles tend to exist in ddiegd state before intermolecular forces
take over and the bubbles ultimately join.

Figure 3.2 shows two droplets deforming as they pass eaehn otta shearing flow given by” =
(yz,0,0) wherey is a user defined parameter that controls the strength ofdhetfflat can be used to
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Fig 3.2: Bubbles deforming in shear flow. This simulationwidubbles deforming as they move past
each other in a shearing flow. The viscosity ratio for the &itnon is 0.5 and a small gravity field is
applied to make the bubbles rise slightly. The shear flow ydrkened to slowly dissipate. We observe
the shearing and deformations as the bubbles interact amdréturn to their spherical shapes as the
speed of the flow decreases.

control the strength of the field. For this animation weysetl and add a small gravity field. We observe
the bubbles slowly rising and moving past each other. Asaivelt bubble rises it begins to move to the
right as it moves to a height where the asymptotic flow is p@sitThe flow is keyframed to gradually
dissipate over the coarse of the simulation and we see th#dsuslow down and return to their spherical
shapes.

Within our simulations there are several parameters whial be adjusted to create a desired sim-
ulation based animation. The user can specify an initiafigaration of droplets and a Stokes flow
to embed the droplets in. This flow has parameters which gbtite speed and variation in the pres-
sure gradient along the different spatial axes. In additibe strength of the gravity field or other long
range body forces may also be specified by the user and singe: farces may be added to simulate
intermolecular interactions. Adjustment of these paransdeads to very different results.

The viscosity ratio parameter is particularly importans aspecial case we set= 1 in the boundary
integral equation eliminating the integral over the doublger potential. The result is that there is no
linear system to solve so interfacial velocities are coragimply by evaluating,
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It should be noted that all phenomena of bubble interactioestioned here can be observed in this
special case, but the computational demands are much sgidA £ 1 solution.
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