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Abstract

Recent research progress in turbulence modeling are discussed with focus on two top-
ics: optimal LES and optimal theory based performance estimation. Optimal LES is an
approach in which the subgrid model is formulated as minimum mean square error es-
timate. It has the advantage of being perfectly general, but requires information about
the statistics of the small-scale turbulence. New advances in representing the multi-point
correlations in both isotropic and wall-bounded flows are discussed, as is the performance
of LES simulations based on these models. In the second part, some recent progress
in analyzing the performance of models used to described turbulent combustion are dis-
cussed. Based on the concept of optimal error estimation, conventional models for the
sub-filter variance of mixture-fraction are analyzed. A new dynamic procedure that pro-
vides improved performance is also discussed. Finally, the interaction of numerical errors
with sub-filter models is studied in an effort to identify the more suitable formulations for
LES-based combustion simulations.
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Large eddy simulation (LES) is now considered an attractive tool for studying turbulent
flows. While many applications of LES have shown very good prediction of the flow field, many
lingering questions regarding sub-filter modeling and the interaction of numerical and modeling
errors still remain. One approach to describing these errors in the optimal LES procedure.

Optimal LES is is based on the observation that the large scale fields being simulated do
not provide sufficient information to reconstruct the small, scales, or even the evolution of the
large scales [?]. The unknown small scales and therefore the LES evolution thus need to be
treated statistically. Optimal LES models are formulated by postulating a model dependency
and then minimizing the mean square error in representing the exact model term. Such models



Figure 1: Three-dimensional energy spectra from finite-volume optimal LES of infinite Reynolds
number isotropic turbulence using a range of resolutions from 163 to 1283. Also shown is the
k−5/3 slope and the result of filtering a k−5/3 spectrum.

can be formulated in terms of small-separation multi-point velocity correlations. The problem
of LES modeling is thus explicitly reduced to the problem of modeling these correlations.
Given this information, optimal models can be constructed that account for the errors of the
numerical scheme used to solve the equations[?], and that are valid even in the presence of
strong anisotropy and inhomogeneity[?]. Optimal LES is thus one approach which can address
the shortcomings of current LES models.

The required multi-point correlations include the 2-point second order, 3-point third order
and 4-point fourth order correlations. For high Reynolds number isotropic turbulence, where
a Kolmogorov inertial range exists, models for these correlations are available or have recently
been developed[?]. They have been used to construct optimal LES models, which yield re-
markably good results. For example, an isotropic LES based on a finite-volume discretization
(filter) and the correlation models produces spectra that are consistent with the finite volume
filtering of a Kolmogorov k−5/3 spectrum (figure 1). In a wall bounded flow, however, modeling
the correlations is more difficult. A new formulation for the anisotropy and inhomogeneity of
the two-point second correlation based on the structure tensors of Kassinos et al [?] has been
developed. A comparison of thse model correlations with those determined from a DNS is
shown in figure 2.

Details of the optimal LES and multi-point correlation modeling approaches will be dis-
cussed, as will their appliaction in LES simulation.
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Figure 2: Comparison of the two-point correlation tensor components from the model and
DNS in the x-y plane with no separation in z. The correlations are centered at y+ = 100 in a
turbulent channel flow, with Reτ = 940

In the second part of the lecture, we discuss the performance of models used to describe
turbulent combustion. Most combustion models use a passive scalar, termed mixture fraction,
to describe the thermochemical state of the gas-phase. In LES, the filtered gas-phase properties
can be obtained if the sub-filter variance of mixture fraction is known. This measure of sub-filter
scalar energy has to be modeled and several models are available in literature. Recently, the
optimal error estimation procedure was used to evaluate sub-filter models [?, ?]. It was found
that the dynamic models, not surprisingly, provided the least error for a range of filter-widths.
However, simple Taylor’s series based analysis of the dynamic procedure found that certain key
terms are being neglected in the model formulation [?]. When included, the new procedure was
found to provide lower errors compared to the conventional procedure.

To understand the impact of numerics on model performance, apriori tests were conducted
using different discretization schemes. It was found that the numerical error is of the same order
as modeling error. Further, numerical errors have a “benign” effect on certain models leading
to reduced overall error. These interesting findings also indicate that mathematical structure
of the model is very important for reducing the inaccuracies due to numerical discretization
[?, ?].
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