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1 Introduction

Blood flow in tumour vasculature carries oxygen and nutrients necessary for
cell life and proliferation, and allows delivery of therapeutic agents within
the tumour. To reach their target cells, these agents must extravasate and be
transported by diffusion and by the convection associated to the movement
of extracellular fluid. Convective transport may become important for ther-
apeutic agents with large molecular weight or size, such as the monoclonal
antibodies or the viruses used as vectors in gene therapy [11]. The high in-
terstitial fluid pressure, exhibited by most solid tumors, is thought to be a
barrier for fluid extravasation and efficient convective transport.

Monoclonal antibodies, able to bind specifically to antigens located on
tumour cell membrane, have been proposed for cancer therapy, either because
of their possible direct cytotoxicity or because antibodies can be conjugated to
radionuclides or toxins [2]. A mathematical model that describes the transport
of monoclonal antibodies by diffusion and convection in spherical tumors,
under the assumption of a continuous distribution of fluid and solute sources in
the tumor mass, was proposed in [1]. Fujimori et al. [9], studied the transport
of antibodies in a cylinder of tumour tissue around a central blood vessel. In
that paper, convection was modelled in a very simplified way, but the binding
of antibodies to cell membrane antigen was taken into account.

In the present work, we analyse the transport of antibodies within a cylin-
drical arrangement of tumour cells around a blood vessel and surrounded by
necrosis (tumour cord, see [13, 10, 12]). We describe in more detail the diffu-
sive and convective transport and the binding of bivalent (IgG) antibodies to
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cell membrane molecules. For the fluid motion and the interstitial pressure,
we use the model previously proposed [5, 6], with some refinements in the
description of the necrotic region.

2 The Mathematical Model of Tumour Cords

In this section we summarize the tumor cord model proposed in [5, 6], and
give an refined description of the necrotic region. We consider an ideal regular
array of parallel and identical tumor cords inside the tumor mass (a geometry
similar to the Krogh model of microcirculation), each cord being separated
from others by a region of necrosis. We assume cylindrical symmetry around
the axis of the central blood vessel, the radial coordinate r varying between
the radius r of the vessel and the outer boundary B of the necrotic region that
surrounds each cord. The radius of the interface between cord and necrosis
is denoted by p,. Because of the radial symmetry of the system of cords,
no exchange of matter occurs through the boundary r = B. This boundary
is mobile since blood vessels are assumed to be displaced as the tumor mass
is growing or regressing. The axial coordinate z will range in the interval
[-H, H]. All the quantities involved depend at most on r, z, and the time ¢.
Only one species of nutrient is considered, and we identify this critical nutrient
with oxygen, denoting by o its local concentration.

2.1 The Cord

In the general case of treated tumours, three components are present in the
cord : 1) viable cells, which are subdivided into proliferating (P) and quiescent
cells (Q); 2) dead (apoptotic) cells produced by treatment; 3) extracellular
fluids that fill the interstitial space. We will denote the fractions of volume
occupied locally by these components by vp, v, v4, and vg, respectively.
Supposing no voids, we have

I/P+I/Q+I/A+I/E:]..

As in [3, 4], it is assumed that (i) the volume fraction of extracellular fluid in
the cord is constant; (ii) dead cells move at the same velocity as living cells;
(iif) cell velocity is radial; (iv) o, vp, vg, V4, and the velocity u of the cellular
component do not depend on z; (v) all cells die if o reaches a death threshold
oy - In view of assumptions (iii) and (iv), we have u=(u(r,t), 0). The velocity
of the fluid component is denoted by v=(v,(r, 2,t), v,(r, 2,1)).

Under the assumption that all the components have the same constant
mass density, the mass balance equations, for ry < r < py(t), can be written
as follows:

0
G+ vpu) = xvp + (0 = NoYp — pp(rtivp, (1)
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ov,

5+ V- (rgu) = —1(0)rg + A@)p — o, tvg (2)

ov

S TV aw) = up(r,t)vp + pg(r vg — mava 3)
vV -V = [igVy — XVp - (4)

In (1)—(4), x is the rate of volume increment due to cell proliferation; (o)
and A\(o) are the rates of the transitions @ — P and P — @, respectively,
assumed as in [8] to be regulated by the oxygen concentration; up and B are
death rates representing the killing effects of treatment by drugs or radiation;
i 4 is the rate of volume loss due to degradation of apoptotic bodies to a
liquid waste. According to the experimental evidence, the function A(c) will be
nonincreasing and y(¢) nondecreasing. In particular, we assign two threshold
values for 0, 05 < 0p, and we assume A = A, and v =7, for o <oy,
A=XAin and Y=, for 0>0p, with A, .. > X000 >0 and 7,45, > Vimin = 0.
In the interval (04,0p), A(0) decreases linearly and (o) increases linearly.
We set v* = vp + vy + v, = 1 — vg, where v* is constant in view of
assumption (i), and we derive the equation for the composite velocity by
summing (1)-(4),
V-wu+ (1-v*)v)=0. (5)

By summing (1)—(3), we obtain the equation for u(r,t),

*

3]
v ) = X — pal —vp — ). ©
Equation (6) is complemented by the boundary condition
u(rg,t) =0.

This equality implies that no boundary condition is required for (1)—(3).

We assume that diffusion in a quasi-stationary regime is the dominant
transport mechanism for oxygen, because of the high oxygen diffusivity [13].
Thus we have the following equation for o:

Ao = fp(o)vp + folo)vg

with the boundary conditions

do
O lr=p )

where fp(0), fo(o) denote the ratio between the consumption rate per unit
volume of P and @ cells, respectively, and the diffusion coefficient. We set
fp(0) > fo(o) and require fo(oy) > 0. At the inner boundary r = ry, we
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prescribe the (constant) oxygen blood concentration o, >0 p, although a more
realistic flux condition might be imposed.

To determine the interface r = p,(t), we recall that necrotic material
cannot be converted back to live cells and that assumption (v) precludes to
have live cells when ¢ is smaller than o, . Thus the following inequalities must
be satisfied:

u(py,t) —py 20

o(pn,t) > oy .

As pointed out in [5], two regimes are possible, one with u(pp,t)—p >0 and
the other with u(py,t) —pn =0, that must satisfy the constraint

(u(pn,t)—pn) (o(pn-t)—on) = 0.

Switching between the two regimes is possible during the evolution of the cord
that follows the treatment.

The extracellular fluid motion was described in [5, 6] by deriving an ap-
proximate equation for the longitudinal average of v,.(r, 2, ):

rt ZH/ rzt

This was achieved by approximating the volumetric eflux of liquid from the
cord ends according to

(1 - I/*)[’UZ(T‘, H7 t) - ’UZ(’I', _H7 t)] = 2C0ut@(r7 t) _poo) ’ (7)

where (,,,, represents the conductivity of the tissues traversed by the outgoing
flux, p., is a “far field” pressure (identifiable with the pressure in the lym-
phatic vessels), and p(r,t) is the longitudinal average of fluid pressure. Thus,
starting from (5), the following equation for the average radial velocity v(r,t)
is obtained:

10 1 .
L (r0) =~ X — A v vig) + SO

P—Pso)|- (8

Assuming that extracellular fluid flow is governed by Darcy law, the longitu-
dinal average of the radial component of Darcy equation,

1-—v")v—u)= —n%

yields the following equation for p:

p(T, t) pO (T t)] d’[‘ ) (9)
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with p, (t) =p(r{ , t). The pressure p, (t) is actually unknown, and (9) requires a
condition at r = p(t), which we will see below. Equation (8) is complemented
by the boundary condition at the vessel wall,

(1 = v")u(rg, 1) = Gn(py — po (1)),

where (;,, is the hydraulic conductivity of the wall and p, > p,, represents the
longitudinal mean of hydraulic pressure in the blood, corrected with the jump
of osmotic pressure.

2.2 The Necrotic Region

The necrotic region (N) is composed of dead cells and liquid, with volume
fractions denoted by vy and vy (v + v = 1). Dead cells degrade to liquid
with rate constant pp. Thus, for py(t) <r < B(t), mass balance yields:

ov
a—,lgv +V-(vyu) =—pyvy, (10)
ov
8—f+v'(’/EV) = UNVnN, (11)

where u and v still represent the velocities of the cellular and, respectively, of
the liquid component. As above, u=(u(r,t), 0). Assumption (i) is relaxed, by
allowing v (and then vy) to change with time. We assume that the pressure
of the liquid, py, is spatially uniform. From (10), we obtain

9 (T8 = —hy = = (12)
and, since V - (vyu+vgv) = 0, we have

V.v=_N (MN+"’—N>. (13)

1-vy vy

We consider the longitudinal average, v(r, t), of the radial component of v and
make the following assumption (that paralleles (7))

(1 - VN)[vz(T7 H7t) - Uz(,r7 _HJ t)] = 2C(§Y1t0)N(t) _poo) )

where (N, > (.. is the conductivity of the tissues traversed by the flux out-
going from necrotic region. Proceeding as above, from (13) we obtain

10 1 o CGu
;5(”’) = 1=, |MNYN VN ;{t (PN —Pso) | - (14)
N

Equations (12) and (14) are complemented by the following boundary condi-
tions at r=py:
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vn () (u(pf, 1) — pn) = v*(ulpy,t) — pn) s
(1 —vn(®)(w(pk,t) — pn) = (1 — ") (v(pyt) — p) -

The dynamics of vy, py, and B was derived in [6] on the basis of the
following assumptions: 1) the cellular fraction cannot not exceed a maximal
value smaller than one, since necrotic cells retain some structural integrity
before degradation; 2) the fluid pressure cannot exceed a given increasing
function of B, denoted by ¥(B), because of the elastic reaction to displacement
of the tissues that surround the whole tumour; 3) when vy is strictly smaller
than the maximal value (taken equal to v*), the reaction of surrounding tissues
is supported by the liquid component and the pressure is equal to ¥(B). In
summary:

vy(t) < v*,
pn(t) < E(B(t)),

(vn () = v*) (pn (t) = Z(B(#))) =0.
As discussed in [6], two regimes are possible. In the first one we have vy (t) <
v*, py(t) =¥(B(t)) and

2 N
% = 20511 = v*)0(pw» t) + v*u(py, 1)) — %(32 = PX) (v = Poc) » (15)

dv 1 . . : .
d—év = =2 [ZPNV (u(pnst) — Pn) _2VN(BB_prN)] —pnvy - (16)
N

Taking into account that matter cannot cross the boundary r=B(t), (15) can
be derived from the mass balance of dead cells plus liquid in N, and (16) from
the mass balance of dead cells, whose total volume is 2H7(B?—p%/)vy- In the
second regime we have instead vy (t) =v*, py(t) <¥(B(t)) and

pr(t) =P + Cgt [2PN(1 — VN);(T\;; =l O], MN] , (17)
2
% =2pnulpn,t) — in (32 - P?\r) . (18)

Equation (18) is derived from the mass balance of dead cells, by taking into
account that v, =v* in this case, whereas py(t), according to (17), is such
that the outgoing flux keeps the volume fraction of liquid at the value 1—v*.
During the evolution, switching between the above regimes may occur when
one of the two constraints (on v, or on p,) can no longer be satisfied.

2.3 The Steady State

In the absence of treatment (up= Bo =0), the only cell populations present
in the cord are the viable proliferating and quiescent subpopulations, and
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vp+vg=1. In this condition, the model admits a stationary state defined by
the constants py, B, vy, Pg, P, and by the time-independent functions vp(r),
o(r), p(r), defined in the interval (ry, pn), and u(r), v(r) in (ry, B). Existence
and uniqueness of the stationary solution were proved in [5] for a simplified
version of the model in which the whole necrotic region was treated as a liquid.
The behaviour of the steady-state solutions was explored numerically in [6].

3 Transport of Antibodies in the Cord at Steady State

Although the monoclonal antibodies (Ab) used for cancer therapy are usu-
ally conjugated to radionuclides or toxins, here we restrict to considering the
transport and binding of antibodies (assumed to have negligible mass) de-
prived of cytotoxic action. The cord steady state will then be not perturbed.
The transport of free Ab molecules occurs by diffusion and convection in the
interstitial space only. We will consider IgG antibodies possessing two equiv-
alent binding sites, and the antigen is assumed to be monovalent and able to
diffuse on the cell membrane, so that antibodies can form single or double
bonds.

Let us denote the extracellular free Ab concentration by ¢, and the surface
concentrations of antibodies bound monovalently or bivalently by b; and b,,
respectively. Let S be the (constant) surface concentration of total antigen.
Free and bound antigens in the extracellular fluid are disregarded (no antigen
shedding). By writing the mass balance in the toroidal volume element (r,r +
dr) x (z,z + dz) of the cord, we obtain

%(CVE) —vpDVe+V - (cvgfv) = =2k, c8a* + kybo* (19)
%(ijla*) + V- (byo*u) = 2k céa* — kyb,a* — k! 3bya* + 2k bya* , (20)
%(z}ﬂ*) + V- (hya*u) = k. 3b,0* — 2k bya* (21)

with o A
§=8—-0b; —2b,. (22)

In the above equations, D is the effective interstitial diffusivity, f is the re-
tardation factor (i.e., the ratio of solute velocity to fluid velocity), a* is the
area of cellular surface per unit volume, 2k, is the rate constant for forming
the first bond between the antibody molecule and the antigen, &, is the dis-
sociation rate constant of a bond (any bond is assumed to be independent),
and k! is the rate constant for forming the second bond (see [7]). In the case
of delivery of the antibody Fab fragment, which is monovalent, the equations
have to be changed accordingly. We disregard the possible internalization of
bound Ab, that however could be easily accounted for.
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Consistently with assumption (iv), we assume that Ab concentration in the
central vessel, ¢;, is independent of z, and that also ¢, b,, b, are independent
of z. After defining the quantities

by =b, by=by 2, S=82, ka_k’zjf,

by taking (5) and (6) into account and performing the longitudinal mean over
(=H,H), (19)-(22) become

dc D 9,6 dc ( )
at Tar( )+f () f C_2k cs+kdb17 (23)
ob ob
6t1 + u(r) 67‘1 =—x i )b1 + 2k,cs — kgby — ki sby, + 2kby,  (24)
ob 6b
with
s=S8—b; —2b,.

We recall that the functions u(r), v(r), and vp(r) are solutions of the model
at the steady state.

At r=r,, we impose for ¢ the following boundary condition that accounts
for both diffusive and convective extravasation:

_D% FFo(ro)elro, 1) = -~ (ex(t) — elro, ) pros +v(rg)(1 = )y (1)

r=r, E
where Pe (Peclet number) is given by
Pe = vgo(rg)(1 —o;)/P,

P is the permeability of the vessel wall, and o, is the filtration reflection
coefficient. The second boundary condition for ¢ requires the description of
the antibody transport in the necrotic region.

We assume that antibodies in the region N can bind to the surface of
dead cells with the same binding constants as in the living cord. Moreover, we
assume that antigen and bound antibodies are destroyed upon the degradation
of the cell, which is consistent with the assumption of neglecting free and
bound antigen in the extracellular fluid. Proceeding as above, and using (12),
the following equations are obtained for r € (py, B):

Oc D 9, Oc Oc Uy

5 75(7‘5) + fU(T)g = —fuNl — UNc— 2k,c8 + kgby,  (26)

b b e .
6_151 u(r)a—rl =2k, c5 — kb, — k! 5b, + 2k,b, (27)
b, b,

5t u(r )E = k' 5b, — 2k, , (28)
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with =8 — b, — 2b, and having defined:

ay PR
1—vy ' 7% 7% ay
N N

¥ T OéN 7 T OéN ~ ~
In the above definitions, a, denotes the area of cellular surface per unit
volume in the N region. Taking oy /a* =vy /v*, we have

vy 1-v* i ZV_*].—VNk, _

S=

a a

v* 1—vy vy 1—-v*
At r=py, we impose
c(pn) = clpn) »
that, from the continuity of the flux of free antibodies and the assumption
that retardation factor is equal in the cord and in the region N, implies

(1- VN)—ac =(1- V*)_Bc .
or|,_ ot or|,_ i
Furthermore, we have
~ vy 1—v*

bi(pn,t) = bi(pn,t), i=1,2.

v 1—vy
Finally, at r= B, we impose

oc

= =o.
or|._g

4 Nondimensional Variables and Parameters

In the numerical solution, we use the following nondimensional variables:

r z
t'=tx, r'=—, ==,
To H
u v p—p o
! ! ! o] ! _
uw=—), v=—, p=—" o =—.
XTo XTo Py — P T

All the Ab concentrations are rescaled by S. All the rate costants, x, v, A,
ly» kg are rescaled by x. The association rate constants are rescaled by x/S.
For the other parameters we have

Dy — P Dy — P by~ b
K/IZF‘:ngooa C1I :Ci bxroooa C(I)utzgout bXH007

D P

Cxrg’ o xro
For the sake of simplicity, the primes will be omitted and we will use the same
symbols for the nondimensional and the dimensional quantities.

! !
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5 Numerical Results

In this section we give examples of the distribution of bound antibody
computed according to the proposed model. For the numerical solution of
the steady state of the tumour cord, we refer to [6]. To approximate the
nonlinear elasticity of biological tissues, the function ¥(B) was chosen as
¥(B)=e(B —1)? in the nondimensional form, with e a given elasticity coeffi-
cient. As in [6], the nondimensional values of the cord parameters were chosen,
whenever possible, according to dimensional values available in the literature.
Concerning the parameters of Ab transport, the values of diffusivity and ves-
sel permeability were chosen according to the following dimensional values:
D=1.3x10"%cm?/s and P/v;=5.7 x 10~ 7 cm/s [9]. Moreover, f=0.75 and
0;=0.8 [1]. For the time course of Ab concentration in plasma, we have set

e (1) = ¢po (me’t/rl +(1 - m)e’t/ﬁ) ,

with values of m, 7, and 7, as in [9]. Equations (23)—(25) and (26)—(28) were
solved by means of a finite difference method that combines a modified Crank-
Nicholson scheme for ¢ with the solution of the equations for the bound con-
centration over the characteristic lines. Zero initial conditions were assumed.

Figure 1, upper left panel, shows the distributions of bound (b;+b,) and free
Ab in a high-affinity case with K =k, /k;=>50 (the corresponding dimensional
value is 5 x 10" M~! if § =1076M). In this case, antibodies in the cord are
mainly in the bound state and their concentration declines with . The lower
left panel shows the time course of b; and b, at r=r; and r=p,. The doubly
bound Ab largely prevails, expecially at the cord periphery where the free
ADb concentration is very small. Note the marked time delay of the maximal
bound concentration at the periphery with respect to the inner region of the
cord. The panels on the right of Fig. 1 depict the case of a reduced affinity,
with K =2. The bound Ab is much smaller, but more uniform with r. Since
the free Ab concentration is higher, b, is close to b, (lower panel). The delay
of the maximum of bound Ab at the periphery is decreased, highlighting the
role of binding in reducing the velocity of Ab penetration.

In the above simulations, taken as the reference cases, the cord steady
state had py =6.23, B=9.42, vy, =0.315, p,=0.86, and the mean interstitial
fluid velocity was 90.93. Because of the high value of Darcy’s constant &, it
is po~pp, so the fluid pressure is fairly uniform throughout the system. The
computation of the diffusive and convective terms revealed a rather significant
contribution of convection to the transport. To test the influence of a reduced
convection, we decreased (,,; = (X, from 0.5 to 0.065 and increased e from
12x1072 to 14x1073. In this way we had p,=0.98 and a quite small intersti-
tial fluid velocity (mean value equal to 7.02), while the radius B was almost
unchanged (B =9.36). In the high-affinity case, the maximum of bound Ab
at r =r, is only slightly reduced (88% of the reference value), whereas the
reduction is greater at the cord periphery (26%). In the low-affinity case, the
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Fig. 1. Distribution of bound and free Ab (upper panels, in both panels the lower
surface represents free Ab); time course of b; and b, at r =7y and r = py (lower
panels). Left panels: k, =k, = 1000, k; = 20. Right panels: k, = k,, = 100, k,; = 50.
Other parameters: (;, = 400, Cous = Cove = 0.5, £ = 10000, e =12 x 1073, py = 1,
D =400, P=5, ¢,y =0.1.

reduction of the maximum is more uniform with r, in particular it is 70% at
r=r, and 65% at r=p,. By contrast, an increased convection was obtained
lowering p, to 0.52, by setting ¢, =¢Y, =3 and e=7x10"2 (mean value of v
equal to 324.8 and B=9.36). In the high-affinity case, the maximum of bound
Ab at r =r, is slightly increased (110% of the reference value), whereas the
increment is very marked at the cord periphery (344%). We note that in the
inner cord the increment is not so large because the binding sites are almost
saturated. In the low-affinity case, the increment of the maximum is still more
uniform, in particular 131% at r=r, and 158% at r=py.

As a concluding remark, we observe that the high binding to cell surface
antigens results in a “barrier” to Ab penetration, generating a more hetero-
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geneous Ab distribution, since the binding in the inner region of the cord
produces a marked decrease of free Ab concentration as r increases (see also
[9]). In our simulations, convective transport appears to be significant espe-
cially at the periphery of the cord, although, even at very high interstitial
pressures, the overall transport is not suppressed. However, further investi-
gations that explore other parameter combinations are necessary to elucidate
the importance of this phenomenon on Ab transport.
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