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Abstract

After a single dose of an anticancer agent, changes due to cell death are expected to occur in the distribution of cells between

proliferating and quiescent compartment as well as in the oxygenation and nutritional state of surviving cells. These changes are transient

because tumour regrowth tends to restore the pretreatment status. The reoxygenation due to the decrease of oxygen consumption is

expected to induce cell recruitment from quiescence into proliferation, and consequently to increase the sensitivity of the cell population

to a successive treatment by a cycle-specific drug. In previous papers we proposed a model of the response of tumour cords (cylindrical

arrangements of tumour cells growing around a blood vessel of the tumour) to single-dose treatments. The model included the motion of

cells and oxygen diffusion and consumption. On the basis of that model suitably extended to better account for the action of anticancer

drugs, we study the time course of the oxygenation and of the redistribution of cells between the proliferating and quiescent

compartments. By means of simulations of the response to a dose delivered as two spaced equal fractions, we investigate the dependence

of tumour response on the spacing between the fractions and on the main parameters of the system. A time window may be found in

which the delivery of two fractions is more effective than the delivery of the undivided dose.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Delivery of a single dose of an anticancer drug is
expected to cause a redistribution of tumour cells between
the proliferating and the quiescent compartment and
among the cell-cycle phases, since most drugs are mainly
effective on cycling cells possibly with some phase
specificity. Moreover, cell death is expected to produce a
decrease in the consumption of oxygen and nutrients and
then induce changes in the oxygenation and nutritional
state of the surviving cells. These changes will be transient
because tumour regrowth tends to restore the pretreatment
status. Hahnfeldt et al. (2003) proposed a mathematical
ODE model for chemotherapy in which the tumour cell
population was composed by two subpopulations having
e front matter r 2006 Elsevier Ltd. All rights reserved.
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different sensitivities to the drug, with constant transition
rates regulating the balance between these subpopulations.
In the case of a single bolus treatment, the model predicted
that the overall sensitivity of the cell population would
recover the pretreatment level (cell resensitization) after a
transient refractory phase due to the survival of the less
sensitive cells. The authors used the model to discuss the
advantages of a low-dose dose-dense protocol. Previously,
the implications of the heterogeneity of cell sensitivity had
been investigated in the context of radiotherapy (Brenner
et al., 1995; Hahnfeldt and Hlatky, 1998).
We observe, however, that the reoxygenation of hypoxic

regions occurring after treatment (Olive, 1994; Masunaga
et al., 2000) is likely to force cell recruitment from
quiescence into proliferation. Evidences of cell recruitment
have been found after a single dose of radiation (Potmesil
and Goldfeder, 1980; Nakano and Oka, 1991; Masunaga
et al., 1993). Consequently, the cell population might
exhibit an increased sensitivity to a successive treatment
by cycle-specific drugs, as compared to the pretreatment
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Fig. 1. (A) Profile of the functions lðsÞ and gðsÞ that govern the

transitions from proliferation into quiescence and, respectively, from

quiescence into proliferation. (B) Block diagram illustrating the activity of

the cytotoxic drug. Symbols explained in the text.
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sensitivity. In the present paper, we intend to investigate
the resensitization process by taking into account the
dynamics of oxygenation in an ideal model of tumour
vasculature, that is, in an array of tumour cords.

In previous papers (Bertuzzi et al., 2003, 2004) we
proposed a model of the response of tumour cords
(cylindrical arrangements of tumour cells growing around
blood vessels of the tumour) to single-dose treatments. The
model included the spatial distribution of cells, cell motion,
and oxygen diffusion and consumption. On the basis of
that model, suitably extended to more adequately account
for the action of anticancer drugs, we study here the time
course of the oxygenation and of the redistribution of cells
between the proliferating and the quiescent compartment.
In Sections 2–4 we discuss the general modelling assump-
tions, the tumour cord model, and its steady state. Section
5 presents the simulations of the model response to a single
dose of drug and the time course of cell resensitization. By
means of simulations of the response to a total dose
delivered as two spaced equal fractions, we investigate in
Sections 6 and 7 the dependence of tumour response on the
spacing between these fractions. A time window may be
found in which the delivery of two fractions is more
effective than the delivery of the single undivided dose.

2. General assumptions

2.1. Regulation of cell kinetics by oxygen and nutrients

In tumour cell populations, the oxygen tension and the
concentration of nutrients such as glucose, are known to
affect the progression across the cell cycle, their decrease
possibly causing cell-cycle arrest and the consequent
establishing of the quiescence status. At very low concen-
trations of these chemicals cell death occurs. In vivo
estimates of the percentage of S-phase cells in different
zones of tumour cords, obtained by pulse injection of 3H-
thymidine, have shown that cell proliferation slows down
when moving toward cord periphery, and this fact has been
related to the decay of nutrient concentration (Tannock,
1968; Hirst and Denekamp, 1979; Moore et al., 1984).
Similar findings have been reported for in vitro multi-
cellular spheroids, in which the S-phase fraction was found
to decrease at increasing depth into the viable rim (Freyer
and Sutherland, 1986b; Bredel-Geissler et al., 1992). Freyer
and Sutherland (1986a, b) and Casciari et al. (1992)
evidenced that both oxygen and glucose concentrations in
the medium affect the decrease of cell proliferation and the
thickness of the viable rim, suggesting the mutual role of
their deprivation in inducing cell death. By detecting the
proliferation marker Ki67 and the label iododeoxyuridine,
Neshasteh-Riz et al. (1997) have shown that the fraction of
nonproliferating cells, which is nonzero also in the
proximity of the spheroid surface, grows gradually
inwards. Reoxygenation and serum refeeding of in vitro
cell lines have been found to induce recruitment of
quiescent cells into proliferation (Åmellem and Pettersen,
1993; Bakker et al., 1993). Recently, the molecular
mechanisms of the cell response to oxygen deprivation
came to be elucidated, and Alarcón et al. (2004)
incorporated the effect of hypoxia in a mathematical
model of cell-cycle control.
Although oxygen, glucose and other chemicals appear to

interact in a complex way in determining the proliferative
status of cells and the occurrence of cell death, we will
consider only one species of nutrient that regulates cell
kinetics and is also critical for cell viability. In the
following, we will identify this chemical with oxygen and
denote its concentration by s, with no distinction between
intracellular and extracellular concentration. We divide the
viable cell population into proliferating (P) and quiescent
(Q) cells and, as in Friedman (2004) and in Bertuzzi et al.
(2005b), we assume that cells can undergo transitions from
one state to the other with transitions rates dependent on s.
A simplified representation of the proliferating cell
population is adopted, disregarding the cell age or the
structure of the cell cycle. Let us denote by lðsÞ and gðsÞ,
respectively, the transition rate from proliferation into
quiescence and the transition rate from quiescence into
proliferation: l and g will be a nonincreasing and,
respectively, a nondecreasing function of s. In particular,
we assign two threshold values for s, sP4sQ, and we
assume: l ¼ lmax and g ¼ gmin for spsQ, l ¼ lmin and g ¼
gmax for sXsP, with lmax4lminX0 and gmax4gminX0. lðsÞ
decreases linearly and gðsÞ increases linearly in the interval
ðsQ; sPÞ (see Fig. 1A). Although the experimental data
suggest a decrease of the rate of progression across the cell
cycle as the nutrient concentration decreases, for simplicity
we take a constant proliferation rate w independent of s. A
more complex mechanism for the recruitment of quiescent
cells into proliferation was considered in Bertuzzi et al.
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Fig. 2. Schematics of a (regular) array of tumour cords. Each vessel is

surrounded by a cord of living cells immersed in a necrotic region.
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(2005a) where, supposing that cells become quiescent if
oxygen concentration falls below a given threshold, the
recovery of proliferation when oxygen concentration
increases occurs with a delay depending on the time spent
by the cell into quiescence.

To illustrate the kinetic behaviour of a cell population
under the above assumptions (neglecting for the moment
the spatial structure that, as we will see, limits the growth),
let us consider a cell population able to grow unboundedly
in a homogeneous environment characterized by an
assigned s value (then l and g will be constant). Let
NPðtÞ and NQðtÞ denote the number of proliferating and,
respectively, quiescent cells at time t. According to the
above assumptions, we have

_NP ¼ wNP � lNP þ gNQ, (1)

_NQ ¼ lNP � gNQ. (2)

If g40, the linear system (1)–(2) has one positive and one
negative eigenvalue given by

a� ¼ 1
2
½ðw� l� gÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðw� l� gÞ2 þ 4wg

q
�, (3)

and it can be seen that the eigenvector corresponding to aþ
has positive components. Thus the population will have
asymptotically an asynchronous exponential growth, and
both NP, NQ will go to þ1 irrespective of the sign of
w� l. If g ¼ 0 (no recruitment) the growth is assured by the
condition wXl.

Denoting by y the proliferating fraction, that is, the ratio
between the number of proliferating cells and the total
number of cells, from Eqs. (1)–(2) we obtain

_y ¼ wyð1� yÞ � lyþ gð1� yÞ, (4)

and asymptotically the proliferating fraction will attain the
value

y1 ¼
1

2
1�

lþ g
w

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

lþ g
w

� �2

þ 4
g
w

s2
4

3
5. (5)

Thus, if s4sP and l ¼ lmin ¼ 0, it is y1 ¼ 1. By contrast,
if sosQ and g ¼ gmin ¼ 0, we have y1 ¼ 1� lmax=w if
lmaxow and y1 ¼ 0 if lmaxXw. Eq. (4) provides some
insight into the population behaviour following a stepwise
change in the nutrient concentration and then in the l and
g values. Let us assume that the proliferating fraction has
initially the value given by (5). If s decreases from a value
larger than sP to a value smaller than sQ and lmin ¼ 0, y

will decrease from the unity toward the new asymptotic
value with initial slope lmax. Conversely, if s increases from
a value smaller than sQ to a value larger than sP and
gmin ¼ 0, the proliferating fraction will increase toward the
new asymptotic value with initial slope gmax if lmaxXw or
gmax þ ð1� lmax=wÞðlmax � lmin � gmaxÞ if lmaxow.
2.2. Modelling the activity of cytotoxic drugs

Anticancer drugs induce cytostatic effects (i.e. blocks of
the cell-cycle progression in different cell-cycle phases) and
cytotoxic effects (i.e. cell death) on tumour cells. In vitro
experiments in which tumour cells were exposed to drugs
for a short time period, have shown that both these effects
extend beyond the incubation time (Montalenti et al., 1998;
Sena et al., 1999). We will consider only cycle-specific
drugs, that is, drugs that affect mainly or exclusively the
proliferating cells.
To account for the occurrence of cell death at later times

after drug removal, we assume that the exposure to the
drug induces a lethal damage in a fraction of cells, that
undergo cell-cycle arrest and will die at a subsequent time.
Thus the living tumour cells at a given time will be
subdivided into undamaged cells and live but lethally
damaged cells (see Fig. 1B). The transition into the
compartment of lethally damaged cells occurs according
to a rate which is a function of drug concentration.
Lethally damaged cells are assumed to die following a first-
order kinetics.
A similar mechanism for the description of the kinetics

of cell death after drug exposure was proposed by Kozusko
et al. (2001) to analyse data of in vitro treatment of tumour
cells. Lankelma et al. (2003) related the actual death rate to
a quantity, the amount of damage, whose dynamics is
controlled by a damage induction rate dependent on the
drug concentration and contrasted by a first-order repair.
The cell response to drug, as proposed in the present paper,
can also be related to the model for the drug-induced cell
death rate proposed in Bertuzzi et al. (2003).

3. Tumour cord model

Let us consider an array of tumour cords inside the
tumour mass, each cord being separated from the others by
a region of necrosis (see Fig. 2). We describe the generic
cord as a circular cylinder around a straight central blood
vessel. We denote by r the radial distance from the axis, by
r0 the radius of the central vessel, and by rNðtÞ the cord
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radius, i.e. the interface with the necrotic region. In the
cord we will distinguish: undamaged proliferating and
quiescent cells, lethally damaged cells, dead cells, and
extracellular fluid. Under the continuum hypothesis, we
consider the volume fractions occupied locally by these
components, denoting these fractions as nP, nQ, ny, nN and,
respectively, nE (with nP þ nQ þ ny þ nN þ nE ¼ 1). We
assume that the treatment does not affect the tumour
vasculature in the time horizon considered.

The main assumptions of the cord model are summar-
ized as follows: (i) Rotational symmetry is assumed, and all
the model variables are independent of the axial coordi-
nate. (ii) Cell velocity is radially directed. Neglecting the
longitudinal cell motion is a simplification which is
justifiable away from the ends of the cord. The dominance
of the radial cell migration in tumour cords has already
been suggested by Tannock (1968). (iii) The transition rates
between the proliferating and the quiescent state are
regulated by the oxygen concentration as described in
Section 2.1. (iv) We assume that cells die instantaneously
when s falls to a critical value sNosQ. The occurrence of a
delay between the instant at which s ¼ sN for a cell and the
actual cell death has been explored by Bertuzzi et al.
(2005a), leading to a rather complex description of the
transient that has been avoided here. The spontaneous cell
loss within the cord, considered in Bertuzzi et al. (2004), is
here neglected (only a small percentage of dead cells has
been found by Moore et al., 1984). (v) Random, dose-
dependent cell death is induced by treatment, and lethally
damaged cells die with a rate constant m. (vi) Dead cells
within the cord are degraded to a fluid waste at a rate mN .
This waste will be drained away by the flow of extracellular
fluid along the axial direction of the cord.

The dynamics of the mixture of cells and extracellular
fluid should be described by writing the momentum balance
and including the interactions among the components (see,
for instance, Byrne and Preziosi, 2003). To take full
advantage of the simplified geometry, we make instead the
further simplifying assumptions: (vii) The velocity of the
cellular component is the same for both live and dead cells.
This common velocity is given by the scalar field uðr; tÞ. (viii)
The volume fraction nE of extracellular fluid is constant in
space and time. In other words, it is assumed that both live
and dead cells possess a uniform spatial arrangement, which
is quickly recovered after any perturbation caused by cell
proliferation and degradation of dead cells. These assump-
tions lead to a purely kinematic approach. The fluid is
supplied by the central blood vessel and leaves the system
through the terminal sections, driven by a pressure gradient
created by the presence of distant lymphatic vessels.
Although experimental measurements support assumption
(viii) for tumour cords at the steady state, since the data
showed small changes in cell density with the radial distance
(Moore et al., 1984, 1985), this assumption becomes an
oversimplification in the transient following a treatment,
where there are evidences of an increased volume fraction of
extracellular fluid (Zhao et al., 1996).
Assuming that all the components have equal mass
density, the conservation equations for the volume frac-
tions of live and dead cells in r 2 ðr0; rN ðtÞÞ can be written
as follows:

qnP

qt
þ

1

r

q
qr
ðrunPÞ ¼ wnP þ gðsÞnQ � lðsÞnP � mPðr; tÞnP, (6)

qnQ

qt
þ

1

r

q
qr
ðrunQÞ ¼ �gðsÞnQ þ lðsÞnP � mQðr; tÞnQ, (7)

qny

qt
þ

1

r

q
qr
ðrunyÞ ¼ mPðr; tÞnP þ mQðr; tÞnQ � mny, (8)

qnN

qt
þ

1

r

q
qr
ðrunN Þ ¼ mny � mNnN , (9)

where mP, mQ are the rate constants of the lethal damaging
induced by treatment on the proliferating cells and,
respectively, the quiescent cells. Since from assumption
(viii) nP þ nQ þ ny þ nN ¼ n% ¼ const, the velocity field
uðr; tÞ satisfies the equation

n%
1

r

q
qr
ðruÞ ¼ wnP � mNnN ; uðr0; tÞ ¼ 0. (10)

Concerning the equation for s, diffusion is the dominant
transport mechanism for oxygen (and glucose) and it
occurs in a quasi-stationary regime. Thus we have

Ds ¼ f ðsÞðnP þ nQ þ nyÞ, (11)

with the boundary condition

sðr0; tÞ ¼ sb, (12)

where f ðsÞ is the ratio between the consumption rate per
unit volume of live cells and the diffusion coefficient, and
we require f ðsN Þ40. At the inner boundary r ¼ r0, i.e. at
the vessel wall, we have for simplicity prescribed the
(constant) oxygen blood concentration sb4sP.
The interface r ¼ rN ðtÞ can be determined by noting that

the necrotic material cannot be converted back to living
cells and that assumption (iv) forbids to have living cells for
sosN . Thus the following inequalities must be satisfied

uðrNðtÞ; tÞ � _rNðtÞX0, (13)

sðrNðtÞ; tÞXsN , (14)

together with the no-flux condition

qs
qr

����
r¼rN ðtÞ

¼ 0. (15)

Therefore, if the cells cross the interface rNðtÞ, that is if
uðrN ; tÞ � _rN40, the boundary condition accompanying
(15) is

sðrNðtÞ; tÞ ¼ sN , (16)

and the interface is a nonmaterial free boundary. Other-
wise, the cord boundary becomes a material free boundary
carrying the conditions (15) and

_rN ¼ uðrNðtÞ; tÞ. (17)
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The first case occurs, for instance, in the stationary state in
the absence of treatment. The switch to the material
interface may happen when a sudden massive destruction
of cells rapidly lowers oxygen consumption, and the
interface rNðtÞ defined by (16) tends to acquire a velocity
larger than uðrN ðtÞ; tÞ. The new boundary is however
subjected to the constraint (14) so that, if during the cord
repopulation sðrNðtÞ; tÞ tends to drop below sN , the free
boundary must become nonmaterial again. This phenom-
enon has been described for the first time in Bertuzzi et al.
(2004) where it is discussed in detail.

By considering the nondimensional time t0 ¼ tw, it is easy
to see that the dynamics of the cell subpopulations depend
on the nondimensional rates l=w, g=w, m=w, mN=w and on the
nondimensional cell damaging rates m0Pðr; t

0Þ ¼ mPðr; t
0=wÞ=

w, m0Qðr; t
0Þ ¼ mQðr; t

0=wÞ=w. However, in the simulations that
follow we use the dimensional variables and parameters, to
better convey the biological meaning of the results.

The equations for nP, nQ, ny, nN require an initial
condition but not a boundary condition at r ¼ r0, because
uðr; tÞ vanishes at r0. We will assume as initial condition the
equilibrium solution corresponding to the absence of
treatment. We describe in the next section this steady state
of the system.

4. The steady state in the absence of treatment

In the absence of treatment, only viable proliferating and
quiescent cells are present in the cord, thus nP þ nQ ¼ n%

and Eq. (11) simplifies accordingly. From (6)–(7) and (10)
we obtain for nP the equation

u
qnP

qr
¼ wnP 1�

nP

n%

� �
� lðsÞnP þ gðsÞðn% � nPÞ,

r0ororN , ð18Þ

where uðrÞ is given by

ruðrÞ ¼
w
n%

Z r

r0

r0nPðr
0Þdr0. (19)

Note that nP=n% represents the local proliferating fraction
of the cell population and, observing that the l.h.s. of (18)
is the time derivative of nP along the trajectories, it is
immediate that nP=n% along the trajectories satisfies the
same equation (Eq. (4)) satisfied by y. As expected, the
solution of (18)–(19) only depends on the ratios lðsÞ=w and
gðsÞ=w.

We may consider the problem of the existence of a
constant cord radius rN and a time-independent solution
nPðrÞ, uðrÞ, sðrÞ that satisfies (18)–(19) together with (11)
and (12), (15), (16). This means that the cell population will
have constant size with a constant distribution between
proliferating and quiescent cells. Existence and uniqueness
of this stationary solution have been proved in Bertuzzi
et al. (2005b). Eq. (18) is degenerate at r ¼ r0 because
uðr0Þ ¼ 0. However, according to our assumptions on the
shape of lðsÞ and gðsÞ, there will exist an inner region of the
cord (where s4sP) in which these transition rates are
constant. Thus, it is easy to see that the solution nP is
constant and equal to

n̂P ¼
n%

2
1�

lmin þ gmax

w

� �2
4

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

lmin þ gmax

w

� �2

þ 4
gmax

w

s 3
5 ð20Þ

for r0orprP, with the radius rP such that sðrPÞ ¼ sP.
Moreover, it can be proved that the volume fraction nP is
decreasing and remains positive in the interval ðrP; rN �

even if gmin ¼ 0. As a consequence, a purely quiescent
region cannot exist. In Appendix A, a positive lower bound
for nPðrNÞ is derived.
The numerical solution of the steady-state problem was

computed according to a procedure which suitably
modifies that described in Bertuzzi et al. (2003). In all the
simulations here presented the function f ðsÞ has the form
(Casciari et al., 1992)

f ðsÞ ¼ F
s

K þ s
. (21)

Fig. 3A shows an example of the profile of nPðrÞ=n% for two
different values of lmax=w assuming lmin ¼ gmin ¼ 0. Since
lmin ¼ 0, nPðrÞ ¼ 1 from r0 to rP, then nP decreases, having
a larger decrease for the larger value of lmax=w (see the
Appendix). It can be seen that, although nP is always
positive, a region which is virtually fully quiescent can be
obtained for suitable values of the parameters. In both
cases, the profile of the oxygen concentration s (and then
rN) is the same since we have assumed equal consumption
of the proliferating and quiescent cells (see Fig. 3B). The
value chosen for r0 (r0 ¼ 20mm) as well as the predicted rN

(rN ¼ 124:8mm) are in the range of the typical values for
tumour cords observed in experimental tumours (Tannock,
1968; Hirst and Denekamp, 1979; Moore et al., 1984).

5. Cell resensitization after the delivery of a single dose of

drug

To describe the evolution of the cord cell population
after the delivery of a chemotherapeutic drug, the dama-
ging rates mP and mQ should be expressed as a function of
the drug concentration. This would require the description
of drug transport from the central vessel to the cells, and of
the drug binding both to the intracellular target and to
nonspecific sites. Moreover, it would require the modelling
of the necrotic region and its evolution, since the drug also
diffuses through this region. Because of the complexity of
these processes, the rates mP and mQ are simply taken here
as assigned functions of time only, disregarding the effects
of the gradients of drug concentration along the radial
direction. On the other hand, we believe that this
approximation does not obscure the main features of the
cord response to drug as studied in the present paper.
Simulations (not shown) of the cord response were made
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by assuming damaging rates proportional to the nonuni-
form drug concentration inside the cord, as computed by a
pure diffusion model without drug consumption with the
necrotic region described according to Bertuzzi et al. (2003,
2004). The simulations confirmed that the cord response
obtained in this way has minor differences from the one
obtained when using damaging rates proportional to the
drug concentration inside the vessel, at least when the
effective diffusivity of the drug was larger than 10�7 cm2=s
and the time constant of the (monoexponential) drug decay
was larger than 1 h.

The single-dose treatment was assumed to consist in the
delivery of a single intravenous bolus of drug, and was
modelled by assigning to mP and mQ the following
expressions:

mPðr; tÞ ¼
mP

t1 � t2
ðe�t=t1 � e�t=t2Þ, (22)

mQðr; tÞ ¼
mQ

t1 � t2
ðe�t=t1 � e�t=t2Þ, (23)

where mP, mQ represent the drug dose times the cell
sensitivity to the drug. Drug decay related to elimination
from the body is represented by the time constant t1,
whereas t2 (that will be assumed much smaller than t1)
represents the drug distribution time. As reference values,
we have taken t1 ¼ 3 h and t2 ¼ 0:15 h. Note that the cord
response as a function of the nondimensional time tw would
depend on the nondimensional parameters t1w and t2w.

Fig. 4 illustrates a typical response of the tumour
cord model to a single dose of a cycle-specific drug
(mQ ¼ 0:2mP). Panel A shows the ratios between the
volumes (per unit cord length) of the different subpopula-
tions of living cells and the value of PþQ at t ¼ 0, for
instance the ratio

R rN ðtÞ

r0
rnPðr; tÞdr=

R rN
r0

rðnPðr; 0Þ þ
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nQðr; 0ÞÞdr in the case of proliferating undamaged cells.
We can see that the minimum of the undamaged cells
ðPþQÞ occurs at about 12 h, which is the time ð4t1Þ when
the damaging rates practically vanish. The decrease of live
cells is instead delayed, according to the death rate
constant m. The decrement of the amount of live cells
reduces oxygen consumption and thus causes a general
reoxygenation of the cord as shown by the time course of
the mean oxygen concentration (panel B). The increase of
oxygen concentration results in higher values of the
transition rate g and lower values of l, thus promoting
recruitment of quiescent cells into proliferation. The effect
of this recruitment is shown by the time course of the
volume of proliferating and quiescent cells (see panel A).
After an initial phase in which P cells are reduced far more
than Q cells because of the cycle-specific effect of the drug,
the recruitment from quiescence together with the ongoing
proliferation produce a regrowth phase in which the
proliferating population prevails over the quiescent popu-
lation. This indicates the existence of a time window in
which the cell population, as a whole, will become more

sensitive to the activity of a cycle-specific drug than before
the treatment (we remark that the P and Q subpopulations,
in this simulation, have approximately the same sizes at
t ¼ 0). Such phenomenon is not described in the model by
Hahnfeldt et al. (2003), in which only the recovery of the
pretreatment sensitivity is predicted. After this phase, the
sensitivity reverts again, tending eventually to the steady-
state value. Panel C reports the time evolution of the cord
radius rN , showing the initial cord regression followed by
the regrowth. Immediately after the start of the evolution,
the interface r ¼ rN becomes material and so remains until
it switches again to be nonmaterial during the regrowth
phase with a slope discontinuity. The decrement of the cord
radius contributes to the increase of oxygen concentration
because of the boundary condition (15).

To elucidate how the sensitivity of the cell population to
a cycle-specific drug changes in time for different scenarios
of parameter values, we report the time course of the
fraction of proliferating cells over the sum of proliferating
and quiescent cells, that is,

PðtÞ

PðtÞ þQðtÞ
¼

R rN ðtÞ

r0
rnPðr; tÞdrR rN ðtÞ

r0
rðnPðr; tÞ þ nQðr; tÞÞdr

. (24)

Fig. 5 illustrates the effect of changes in the parameters of cell
kinetics, that is, parameters of the functions lðsÞ and gðsÞ, on
the time course of the proliferating fraction given by (24). In
all the panels, the continuous line represents the reference case
(parameters as in Fig. 4). Panel A shows the effect of
changing lmax and gmax (lmin ¼ gmin assumed equal to zero).
When lmax takes the lower value, the population is initially
almost equally divided into proliferating and quiescent cells
and, after an initial depletion of P cells, the oversensitization
only occurs when gmax has the greater value since the rate of
recruitment is larger. On the contrary, when lmax takes the
higher value the initial fraction of P cells is lower (about
16%), and for both the chosen gmax values the proliferating
fraction appreciably increases, since even a limited number of
recruited cells suffices to affect that fraction. Increasing gmax

makes this process more rapid. The position of the thresholds
sQ and sP is found to be of major importance (panel B).
When these thresholds are lowered to sQ ¼ 5mmHg and
sP ¼ 10mmHg, cell resensitization is maximal because the
reoxygenation is better exploited to recruit cells from
quiescence. The opposite happens when the thresholds are
increased. The effect of the width of the linear portion of the
functions lðsÞ and gðsÞ, changed while keeping constant the
value of s at which l ¼ g, is shown in panel C. Although
oversensitization occurs in all the cases examined, its extent is
greater when the difference sP � sQ is smaller.
Fig. 6 shows the effect of changes in the parameters

related to the activity of the delivered drug. The curves of
panel A were obtained by changing mP;mQ with mQ=mP

constant, to simulate changes in drug dose. As expected,
the resensitization is maximal (and very marked) with the
high dose, the large cell death producing a quick and
intense reoxygenation. The consequence of different
sensitivities of the quiescent cells, i.e. of different mQ

values with mP constant, are shown in panel B. The
increase of the proliferating fraction after the treatment, as
mQ increases, is facilitated by the increase in the overall cell
mortality. We remark, however, that for mQ ¼ mP the
higher percentage of proliferating cells will not correspond
to a higher sensitivity of the population to a second dose of
the same (nonspecific) drug. A slower drug elimination at
constant mP;mQ tends to dampen the increase of the
proliferating fraction (panel C). This effect is also produced
by a decrease of the death rate m of the lethally damaged
cells, as shown in panel D. When m is small the minimum of
living cells is achieved later and its value rises because of
the concomitant cell repopulation, with the final effect of a
delayed and reduced reoxygenation.
The existence of a time window, in which the proportion

of proliferating cells in the population is greater than the
pretreatment value, suggests that a second dose of a cycle-
specific drug delivered in this time interval could be more
effective than the first dose. In the next section we will
investigate this possibility.

6. Split-dose response

We have compared the response of the cell population to
a single bolus of drug (characterized by given mP;mQ),
delivered at t ¼ 0, with the response to two half-dose
boluses ðmP=2;mQ=2Þ delivered at t ¼ 0 and T . Fig. 7
illustrates a typical time course of the undamaged viable
cells when T ¼ 36 h.
A criterion for comparing the effectiveness of different

treatments is not univocally established. Thus the compar-
ison was performed by using the following indices:

Survival ratio ¼
min ½P2ðtÞ þQ2ðtÞ�

min ½P1ðtÞ þQ1ðtÞ�
, (25)
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Relative growth delay ¼
t802 � t801

t801
, (26)

where the subscripts 1; 2 refer to the single-dose response
and to the split-dose response, respectively, and t80 is the
time at which PþQ regrows up to 80% of the initial value
(see Fig. 7).

Fig. 8, panel A, shows the behaviour of the survival ratio
as a function of the interfraction interval T. As expected, in
coincidence with the time window in which cell over-
sensitization occurs this ratio is smaller than one. This
shows the advantage of the dose splitting, with a more
marked advantage at the higher dose. Instead, when the
drug is not cycle-specific ðmQ=mP ¼ 1Þ, the advantage
obviously disappears even though the proliferating fraction
of the cell population after the first dose is high in this
condition (see Fig. 6B). We note that the survival ratio is
less than one even with small interfraction intervals
(T ¼ 6–12 h), apparently in contrast with the strong
depletion of the proliferating fraction at those times (see
Fig. 5A). This fact can be explained by considering that the
drug is active for a nonnegligible time interval (about 12 h
in our simulations). Therefore, as noted by Hahnfeldt et al.
(2003), also in the case of a single dose part of the dose
actually affects a cell population that has become
refractory. The results of Fig. 8A are paralleled by the
behaviour of the relative growth delay (panel B). It can be
surprising that when T ¼ 72 h the growth delay induced by
splitting the smaller dose does not decrease: in this case,
although the cell population is no longer oversensitive,
splitting the dose still produces a positive growth delay
because of the saturating time course of PþQ.

7. Effect of intervessel distance in the absence of necrosis

In many not too advanced tumours, the vessel density is
high enough to guarantee an oxygenation level that
prevents the formation of necrotic regions. We deal with
this case by viewing the tumour as partitioned into
adjacent, parallel and identical cylinders of tissue each
surrounding a central vessel, as in the Krogh model of
microcirculation. In addition, we assume that the vessels
move solidly with the surrounding tissue, and are so
displaced from the initial position during the evolution of
the tumour mass (Bertuzzi et al., 2005a). We denote by BðtÞ

the radius of a generic tissue cylinder (cord). In the spirit of
Krogh’s approximation, the surface r ¼ BðtÞ prevents, due
to the symmetry of the system, any exchange of matter with
the neighbouring cords. In a regular hexagonal array of
vessels, 2B represents the distance between the axes of two
neighbouring vessels. Under these assumptions, the model
described in Section 3 still holds with Eq. (15) replaced by

qs
qr

����
r¼BðtÞ

¼ 0. (27)

The cord boundary BðtÞ will be a material boundary
defined by

_B ¼ uðBðtÞ; tÞ, (28)

until sðBðtÞ; tÞ4sN .
In the absence of necrosis, supposing r0 and sb

unchanged, the mean oxygen level will be higher than in
the cases in which necrosis is present and it is expected that,
after the treatment, the reoxygenation will reach higher
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levels with a consequent more marked increment of the
proliferating fraction. We have simulated a possible initial
state for the treatment by allowing the system to grow from
the initial condition nPðr; t0Þ ¼ 1, r0prpBðt0Þ, with Bðt0Þ

chosen such that sðBðt0Þ; t0Þ4sP. The initial state for the
treatment was chosen when sðBðtÞ; tÞ was equal to 5mmHg;
we obtained B ¼ 91:4mm. Fig. 9A illustrates the time
course of the proliferating fraction after a single dose of
treatment. As compared with the corresponding case in
which necrosis is present, the initial value of the
proliferating fraction is higher (0.70 vs. 0.49) because of
the higher level of oxygen concentration, and after the dose
delivery the fraction reaches a value close to the unity.
Panel B shows the time course of the mean oxygen
concentration. This behaviour suggests that splitting the
dose may be even more advantageous in this case than in
the case in which necrosis is present. This prediction is
confirmed by the results of Fig. 10 that show, for a given
treatment dose, a reduced survival ratio and an increased
growth delay in the case of absence of necrosis.
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Fig. 10. Survival ratio (A) and relative growth delay (B) as a function of

the time interval between the two fractions. Closed symbols, presence of

necrosis; open symbols, absence of necrosis. mP ¼ 4 and mQ=mP ¼ 0:2,
8. Concluding remarks

In the present paper we have studied the changes in the
sensitivity of a tumour cell population to a cycle-specific
drug, following the delivery of a single dose treatment. Our
study utilizes a tumour cell population model with spatial
structure, that incorporates oxygen diffusion and con-
sumption and assumes that recruitment of quiescent cells
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Fig. 9. Comparison of the response in the absence of necrosis (dotted

lines) with the response in the presence of necrosis (reference case, solid

lines). Time course, after a single dose of treatment, of the proliferating

fraction (A) and of the mean oxygen concentration (B). Initial condition as

specified in the text, parameter values as in Fig. 4.

other parameters as in Fig. 4.
into proliferation is stimulated by the increase of oxygen
concentration. Because of the increase in oxygen concen-
tration induced by the initial dose, the model predicts that
a level of sensitivity greater than the pretreatment value
may be attained in a time window after drug delivery. This
fact implies that splitting the drug dose into two fractions
separated by a suitable time interval may improve the
efficacy of the treatment. Our simulations have only
considered the case of two equal fractions, although to
fully exploit the occurrence of oversensitization would
require the study of an optimal fractionation strategy in
which also the relative size of fractions is to be assessed.
Fractionation of drug delivery is used in clinical che-
motherapy with the aim of reducing the toxicity and then
increasing the maximum tolerated dose (Moore and
Erlichman, 1998). The present results highlight a possible
additional advantage of fractionated schedules.
Although the oxygen concentration has been assumed to

be the driving force of the transitions between proliferation
and quiescence, the results of the present investigation
should qualitatively hold even when cell kinetics is actually
regulated by another chemical, provided that it is highly
diffusible and consumed by live cells. Since, as it is well
known, the cell sensitivity to radiations depends on the
oxygen concentration, the dynamics of reoxygenation is
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important for assessing the time course of cell radio-
sensitivity. Thus our approach appears to be useful also in
the context of radiotherapy, and this application will be
presented in a forthcoming paper.

Some limitations of our model must be pointed out. The
possible cell-cycle phase specificity of the drug has been
disregarded since the cell cycle structure of the tumour cell
population has not been accounted for. A more complete
description of drug effects would in fact require a cell
population model in which the proliferating subpopulation
is structured in terms of cell age or cell maturity. Our
analysis assumes that the treatment does not affect the
tumour vasculature. Thus we are neglecting possible effects
such as the increase of tumour perfusion related to the
decompression of vessels in the presence of cell death
(Griffon-Etienne et al., 1999; Araujo and McElwain, 2004).
Finally, the model exploits an ideal geometry for the
tumour tissue and its vasculature, that is, the tumour is
viewed as an array of tumour cords whereas tumour
vasculature is in general highly irregular and heteroge-
neous. It should be of interest to extend our approach to
more realistic geometries. Some efforts to retain the
discrete nature of vasculature in tumour modelling, with
approaches different from that based on the Krogh
cylinder model, have been presented with the aim of
describing the distribution of oxygen (Secomb et al., 1993;
Baish et al., 1996), the transport of drugs (McDougall et
al., 2002), and the tumour evolution after treatment (Ribba
et al., 2005).
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Appendix A. A lower bound for mP

From Eq. (18), the function nPðrÞ satisfies, for r4rP, the
following equation

qnP

qr
¼

1

uðrÞ
wnP 1�

nP

n%

� �
� lðsÞnP þ gðsÞðn% � nPÞ

h i
, (A.1)

with the boundary condition nPðrPÞ ¼ n̂P. Since qnP=qr can
be seen to be negative (see Bertuzzi et al., 2005b), we have

qnP

qr
X

1

minr2½rP;rN �
uðrÞ

wnP 1�
nP

n%

� �
� lmaxnP

h
þ gminðn

% � nPÞ

i
. ðA:2Þ

The quantity ruðrÞ is nondecreasing in view of (19),
thus minr2½rP;rN �

uðrÞXrPuðrPÞ=rN . Therefore we have
nPðrÞXn%~nPðrÞ with ~nPðrÞ given by

q~nP

qr
¼ að�~n2P þ c1 ~nP þ c2Þ, (A.3)
~nPðrPÞ ¼
n̂P

n%
, (A.4)

with

a ¼
2n%rN

n̂Pðr2P � r20Þ
, (A.5)

c1 ¼ 1�
lmax þ gmin

w
, (A.6)

c2 ¼
gmin

w
, (A.7)

where c2X0. In the case c1 ¼ c2 ¼ 0 the solution of
(A.3)–(A.4) is given by

~nPðrÞ ¼
1

n%
n̂P
þ aðr� rPÞ

. (A.8)

Excluding the above case, the r.h.s. of (A.3) can be

rewritten as aðZ1 � ~nPÞð~nP � Z2Þ, where Z1;2 ¼
1
2
ðc1�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c21 þ 4c2

q
Þ, Z1X0, Z2p0, Z1aZ2. By comparing Z1 with

n̂P=n%, as given by Eq. (20), and taking into account that n̂P

is a decreasing function of lmin and is increasing with gmax,
and that lminolmax, we can see that Z1on̂P=n%. Therefore
~nPðrÞ is decreasing. By integrating (A.3) with the boundary
condition (A.4), we obtain

~nPðrÞ ¼
Z1 � Z2Ae�aðZ1�Z2Þðr�rPÞ

1� Ae�aðZ1�Z2Þðr�rPÞ
, (A.9)

where

A ¼

n̂P
n% � Z1
n̂P
n% � Z2

. (A.10)

Functions (A.8) and (A.9), evaluated at r ¼ rN , yield the
lower bound for nP=n%. By rewriting (A.9)–(A.10) in terms
of c1 and c2, and differentiating w.r.t. c1 while keeping c2
constant, it is easy to see that this bound is decreasing as
lmax=w increases.
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