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In this paper we study and extend the mechanistic mean field theory of growth of cellular
populations proposed by Mombach et al. [Mombach JCM, Lemke N, Bodmann BEJ, Idiart
MAP. A mean-field theory of cellular growth. Europhys Lett 2002;59:923–928] (MLBI
model), and we demonstrate that the original model and our generalizations lead to infer-
ences of biological interest. In the first part of this paper, we show that the model in study
is widely general since it admits, as particular cases, the main phenomenological models of
cellular growth. In the second part of this work, we generalize the MLBI model to a wider
family of models by allowing the cells to have a generic unspecified biologically plausible
interaction. Then, we derive a relationship between this generic microscopic interaction
function and the growth rate of the corresponding macroscopic model. Finally, we propose
to use this relationship in order to help the investigation of the biological plausibility of
phenomenological models of cancer growth.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Human beings, animal and plants are sets of cells. As a consequence, modeling the growth of cellular populations should
be considered among the most important scientific topics. Surprisingly, the vast majority of theoretical work on this subject
[1] produced essentially mathematical models based on qualitative ‘‘macroscopic” biological reasoning or, as in the case of
the well known Gompertz model, purely on the ground of good fit to experimental data [1]. Among the few works aimed at
introducing a mechanistic theory in order to link macroscopic to microscopic parameters, the model (hereafter referred as
the MLBI model) proposed by Mombach et al. [2] is particularly interesting because of its simplicity and biological plausibil-
ity, being based on the realistic hypothesis of long range interactions between cells in a population whose ‘‘structure is a
fractal” [2]. Furthermore, relying on the fractal structure of cells aggregates, is adequate to describe tumor growth [3,4],
at least in some particularly relevant biological frameworks. As a consequence of its biological realism, MLBI model allowed
its authors to unify at microscopic level three well known growth laws (logistic, Gompertzian and exponential laws [5]). In
other words, apparently contradictory growth models are simply macroscopic different manifestations of a common phys-
ical microscopic framework (note that at macroscopic level it is easy to show that those models are linked). However, many
other relevant growth laws were proposed. Among them we cite the von Bertanlaffy’s [5], the West-Guiot law [6,8], the
power law [9–11], all of which well describe experimental ‘‘in vitro” and ‘‘in vivo” data [5,9,11].

This ‘‘proliferation” of different models, all, at least apparently, theoretically sound, and with some encouraging experi-
mental evidences, should not surprise the non-biologist reader. For example, let us consider solid tumors (to which we shall
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mainly refer in the following): with the term ‘‘solid tumors” one summarizes a wide range of polymorphic diseases charac-
terized by at least three levels of growth behaviors: (1) disease-specific level: different kinds of tumors may exhibit different
kinds of growth; (2) the inter-patients level: two similar subjects, suffering of the same kind of cancer, may show very dif-
ferent time courses of the diseases; (3) intra-patient level: the main tumor may have growth characteristics that are different
from those of its metastases. Finally, there is also a temporal level: tumor is a dynamic disease whose characteristics of pro-
liferation may change reflecting changes in its topological structure [8].

The starting point of this research has been the following question: given the complexity of growth phenomena of tumor
and non-tumor cell populations, are the encouraging results obtained by many and different mathematical models simply
due to their fitting flexibility or there is some unifying mechanism?

Aim of this letter is to show that the MLBI model is able to unify also the above listed important models of growth, and
others, besides those considered in [2]. Thus, we shall show that apparently very different behaviors in very similar condi-
tions simply reflect slight differences in physically meaningful (and, in principle, experimentally measurable) parameters
such as the fractal dimension of the tumor. Analyzing the relationships between the MLBI model and the model [8] we shall
also shortly examine the case of time varying topological properties.

The relevance of our findings, in our opinion is twofold. In fact, on one hand, the fact that the MLBI model may particu-
larize itself to all main empirical models, confirmed by good fitting of experimental data, gives more biological soundness to
the MLBI model; on the other hand, those models have now a theoretical ground which might explain them at microscopic
level.

Furthermore, we shall extend the MLBI model by allowing very general laws of cell–cell interaction and, in so doing, trans-
forming it in a meta-model, that unifies many other models, and, starting from the micro level, to define new ones. We pro-
pose a simple method of ‘‘reverse engineering”, which might allow insights on the biological basis of a given
phenomenological model of growth of cellular populations. In fact, we shall show that our generalization of the MLBI model
seems to indicate that, for a macroscopically defined model, its population level growth rate (PLGR) must be not only
decreasing with the population size, as it is well known, but it must also be convex (its second derivative must be positive).
2. Phenomenological models and the MLBI model

A phenomenological model that describes the growth of a population of cells may be written as
Plea
Chao
x0 ¼ xRðxÞ; ð1Þ
where x is the size of the population. RðxÞ denotes the PLGR, which, due to evident biological reasons, must be a decreasing
function of x.

Coming to the MLBI theory, the assumptions on which the model is built (other than the above mentioned long range
cell–cell interactions and the fractal spatial structure of the population) are the following: (i) a sufficiently high supply of
nutrients (as a consequence the MLBI model is particularly adequate to describe the behavior of an ‘‘in vitro” sufficiently
nourished multicellular spheroid and also ‘‘in vivo” tumors in the angiogenic phase); (ii) the inhibiting chemicals are such
that they diffuse in the cellular structure; (iii) the individual ‘‘cell level” proliferation rate of a cell results from its baseline
replication rate Gi minus the long range inhibition interactions with all other cells of the population. For the generic ‘‘ith” cell
it is [2]:
Ri ¼ Gi �
Xn

j¼1

J
1� di;j

j~ri �~rjjc
; ð2Þ
where J is a constant related to the effectiveness of the inhibitory action, j~ri �~rjj is the distance between cell i and cell j, di;j is
the Kroeneker’s symbol. The function Jj~ri �~rjj�c is an ansatz function, physically motivated in [2] by the theory of diffusion in
fractal structures [12]. Starting from (2) and from the assumption of fractal structure (with fractal dimension Df ), in [2] the
following relation has been obtained:
RðxÞ ¼ G� JIðxÞ; ð3Þ
where G is the average of the Gis and
IðxÞ ¼ x
Df � c

Df

x
x

� �1�c=Df

� 1

 !
if c 6¼ Df ; IðxÞ ¼ x

Df
Log

Df

x
x

� �
if c ¼ Df ; ð4Þ
where the constant x, defined in [2], is related to the density of the cellular aggregate. Thus, starting from microscopic cell–
cell interactions, a macroscopic but ‘‘non-phenomenological” equation x0 ¼ xRðxÞ has been obtained. Note that, as previously
stressed in [2], the parameters J and c might be determined by concentration measurements, and Df by the pattern of the
cellular structure.

The family of ODE models x0 ¼ xRðxÞ with PLGR given by (3) and (4) has been studied in [2] with the following results: for
c ¼ Df the model reduces to the Gompertz model; for 0 P c < Df the MLBI model gives the generalized logistic model
x0 ¼ k1x� k2xm with m ¼ 2� ðc=Df Þ 6 2. However, m ¼ 2) c ¼ 0, i.e. biologically unrealistic constant interactions [2]. We
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add here that this non-realism might explain the poor performances of the logistic model in fitting experimental tumor data,
as reported in [5].

3. The general behavior for c > Df

Unfortunately, because of a minor error in [2], the exploration of the parameter space was not deepened as it deserved. In
fact, the authors claimed that for c > Df the behavior of the system is of exponential type. We detected the trivial error and
discovered that all the other main phenomenological models of growth may be considered as particular cases of the MLBI
model.

If c > Df , let us set c ¼ Df ð1þ QÞ with Q > 0, that yields
Plea
Chao
RðxÞ ¼ J
Q

x
Df

� �Qþ1

x�Q þ G� Jx
Df Q

: ð5Þ
Note that the above PLGR is decreasing and also convex
R0ðxÞ ¼ �J
x
Df

� �Qþ1

x�Q�1 < 0; R00ðxÞ ¼ ðQ þ 1ÞJ x
Df

� �Qþ1

x�Q�2 > 0: ð6Þ
We shall show in the final section that the convexity is as important as the negativity of the derivative R0ðxÞ.
The solution of x0 ¼ xRðxÞ when
G� Jx
Df Q

< 0) Df < c < Df þ
xJ

G
ð7Þ
is not the exponentially increasing one given in [2], since the equation x0 ¼ xRðxÞ has a global attractor:
lim
t!þ1

xðt; xð0ÞÞ ¼ xeq ¼
x
Df

Jx

Jx� GQDf

 !1=Q

¼ x
Df

Jx

Jx� Gcþ GDf

 !Df =ðc�Df Þ

ð8Þ
and the dynamics of xðtÞ is as follows:
xðtÞ ¼ xQ
eq þ ðxð0Þ

Q � xQ
eqÞ exp �t � �GQ þ Jx

Df

� �� �� �1=Q

: ð9Þ
On the contrary, if c > c� :¼ Df þ xJ=G there is exponential explosion of the growth
xðtÞ / exp G� Jx
c� Df

� �
t

� �
: ð10Þ
In view of some experimental findings, exponential growth has been traditionally associated to initial stages of growth. Thus
Eq. (10) may be read as follows: the case c > c� is not likely to be observed or it is related to very quickly growing tumors for
which a long temporal observation is, of course, not possible.

4. Power law growth

By means of a phenomenological approach and without explicitly assuming the presence of a necrotic core, Hart et al. [9]
formulated an interesting model whose solution is a power law growth of the tumor mass, and validated this model by
means of fitting to breast cancer data. A similar behavior was also predicted in [10], where an interesting individual based
model was used, and in [11], where also experimental data are reported (see also [1]). So an important feature for a unified
mechanistic model would be to allow such a behavior. Actually, this happens in our case, since if
G� Jx
Df Q

¼ 0) c ¼ Df þ
Jx

G
ð11Þ
the tumor will grow following an asymptotically power law. In fact, when (11) holds
x0 ¼ J
Q

x
Df

� �Qþ1

x1�Q ) xðtÞ ¼ x
Jx=ðDf GÞ
o þ J

x
Df

� �1þJx=ðDf GÞ

t

 !Df G=ðJxÞ

: ð12Þ
For large times
xðtÞ / t
G
JxDf : ð13Þ
Note that the power depends on the fractal features of the aggregate of growing cells. In particular, linear growth of the
diameter of the spheroid, corresponding to cubic variation of the cell number (quadratic in 2D), is obtained when
c ¼ 4Df =3 (in 2D: c ¼ 3Df =2). According to [9], the power law growth we have found does not depend on the localization
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of the proliferating cells near the surface of the spheroid. We remark that our analysis predicts the possibility of power law
growth only for a specific combination of the parameters. This might be read in a dichotomic way: either the model has to be
modified to manage the power law more robustly, or the power law may be read as a limit case. The same considerations
hold for the Gompertz model.

Summarizing the findings of this and of the previous sections, we may state that c is a bifurcation parameter with thresh-
old value c� ¼ Df þ Jx=G > Df determining a ‘‘catastrophic” transition, since xðtÞ is bounded for c < c�, whereas the growth is
unbounded for c P c�. The threshold for the unbounded growth depends not only on the geometrical parameter Df , as stated
in [2] (where the threshold was Df ), but also on the parameter J (with oc�=oJ > 0) and on the proliferation parameter G (with
oc�=oG < 0). Thus, higher values of the proliferation parameter imply a lower threshold for the spatial decaying c, whereas
high values of J require higher values for c to have power law or exponential expansion.
5. Linear growth law and linear growth

For Q ¼ 1, i.e. c ¼ 2Df , the law of the growth x0 ¼ xRðxÞ becomes a linear first order equation
Plea
Chao
x0 ¼ J
x
Df

� �2

þ G� Jx
Df

� �
x: ð14Þ
To the best of our knowledge, this is the first time that the possibility of such a simple law of growth is contemplated in the
context of tumor growth and with a plausible mild constraint on parameters. If G� Jx=Df < 0 the tumor size will be at-
tracted to the equilibrium point
xeq ¼
Jx2

Df ðJx� GDf Þ
ð15Þ
or, if G� Jx=Df > 0, it will expand exponentially. If G� Jx=Df ¼ 0, the growth of the tumor is linear from t ¼ 0
xðtÞ ¼ xð0Þ þ J
x
Df

� �2

t: ð16Þ
6. Comparison with the model by del Santo, Guiot et al. [6,8]

We show here that the very interesting model of growth proposed by del Santo, Guiot and coworkers in [6,8] is a partic-
ular case of the MLBI model. In fact the model in [6] reads as follows:
x0 ¼ xðaxp�1 � bÞ ð17Þ
with p 2 ð2=3;1Þ, a > 0 and b > 0. Matching with (5)
p ¼ 2� c
Df

ð18Þ
which leads to
1 <
c

Df
<

4
3
;

xJ

G
>

Df

3
: ð19Þ
For tridimensional tumors following the Guiot’s law this implies that it must be c < 4.
Up to now we assumed that the topological properties of the tumor were constant. On the contrary, as Guiot et al.

stressed in their paper, these properties, and namely the fractal dimension, change during tumor development (see also
[7]), in a way that the scaling exponent p is increasing at least for well perfused tumors in the angiogenic phase (i.e. when
there is no lack of nutrients, as required for the rigorous application of the MLBI model). This means to assume an increasing
Df ðtÞ or, if we assume that also c is a time function, to assume that Df ðtÞ increases faster than cðtÞ. Finally, tumor for which
data fitting shows constant p should have cðtÞ / Df ðtÞ.
7. The von Bertanlaffy’s model

One among the early mathematical models of growth, due to von Bertanlaffy [5], was as follows:
x0 ¼ xðax�1=3 � bÞ ð20Þ
and it is easily recovered as a particular case of the MLBI model provided that
c ¼ 4
3

Df ;
xJ

G
>

Df

3
: ð21Þ
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8. Relationships between c and Df

We saw that for c ¼ Df þ ðJxÞ=G there is power law growth, and for higher values of the fractal dimension the growth is
more rapid, which well agrees with usual tumor behavior where a high Df is considered an index of high growth velocity
(and, as a consequence, of poor survival) [3,13]. However, for Df < c < Df þ ðJxÞ=G, if we use Eq. (8) we obtain that:
oDf

xeqðDf ; cÞ < 0, and when c > Df þ ðJxÞ=G it is oDf
xðt; Df ; cÞ < 0. Apparently, the model seems to fail in reproducing an

important biological property. However, we note that in the Guiot’s and in the von Bertanlaffy’s case, where there is a linear
relationship between c and Df , it is ðd=dDf ÞxeqðDf ; cðDf ÞÞ > 0. Similarly, for c > c�, one may find linear relationships such that
the exponential grows faster. Finally, for c < Df for whatever c ¼ hðDf Þ with h0ðDf Þ > 0 it is: ðd=dDf ÞxeqðDf ;hðDf ÞÞ < 0. Sum-
marizing these findings, it seems that it should be c > Df and that c and Df must be positively correlated.

9. Extending the MLBI model

We may observe that the inhibition function j~ri �~rjj�c used in (2), may assume very high values in the neighboring of the i
cell. Furthermore, that particular ansatz was chosen in [2] because of the assumption of diffusion of inhibiting chemicals,
which might be no more valid in case of well vascularized tumors. Thus, we change the function Jj~ri �~rjj�c with another gen-
eric positive and decreasing ansatz function Fðj~ri �~rjjÞ (FðuÞ > 0, F 0ðuÞ < 0, Fðþ1Þ ¼ 0 and, if it is necessary, Fð0Þ < þ1). One
has
Plea
Chao
Ri ¼ Gi �
Xn

j¼1

ð1� di;jÞFðj~ri �~rjjÞ: ð22Þ
Since the spheroid radius is related to x by the following formula [2, p. 925]: Rmax ¼ ðxDf =xÞ1=Df , and proceeding as in [2] but
using FðrÞ instead of the specific ansatz Jr�c, we easily obtain a generalized PLGR, Rgen
RgenðxÞ ¼ G� x
Z RmaxðxÞ

ro
FðrÞrDf�1 dr; ð23Þ
which defines a very general family of models of growth. This family is such that all the models belonging to it share two
important properties: RgenðxÞ is decreasing and convex
R0genðxÞ ¼ �F
Df

x
x

� �1=Df
 !

< 0; R00genðxÞ ¼ �
1
Df

Df

x

� �1=Df

x�1þ1=Df F 0
Df

x
x

� �1=Df
 !

> 0: ð24Þ
Note that
SignumðR00genðxÞÞ () � SignumðF 0ðx1=Df ÞÞ: ð25Þ
We think that the relationship (25) has implications of relevant biological interest. In fact, as long as the basic hypotheses
stated in [2] are valid, the( relationship means that the assumption of bio-physically realistic interaction between the cells
(i.e. interactions decreasing with the distance) implies that the PLGR of the corresponding mean field macroscopic growth
model is convex. On the contrary, a concave PLGR would correspond to a unrealistic F. The ) relationship may be read as
follows: given a macroscopic growth model, if its PLGR is convex, then the underlying microscopic cell–cell interaction is
decreasing, which is biologically meaningful. On the contrary, if R00ðxÞ < 0 then it would correspond to an unrealistic cell–cell
interaction increasing as the distance between the cells increases.

More explicitly, we propose the study of the convexity of RðxÞ (i.e. the sign of R00ðxÞ) as a way to start investigating the
biological plausibility of a phenomenological cellular growth model, and to classify a model characterized by negative or
varying sign R00ðxÞ at least as ‘‘suspect”. An example is the well known generalized logistic model with exponent m > 2:
x0 ¼ ax� bxm. This model has been introduced in [14], in a context (populations of insects) where values m P 2 are perfectly
biologically plausible. Analyzing its PLGR RðxÞ ¼ a� bxm�1, it is easy to see that this kind of logistic model would correspond
to a non-realistically increasing cell interaction function: m > 2) c < 0) F 0ðrÞ ¼ ð�cÞr�c�1 > 0. A different example is the
following: let us consider an exponentially decreasing PLGR: RðxÞ ¼ A exp �Bxd

� �
� C;0 < d 6 1. This PLGR is decreasing

(R0ðxÞ < 0) and convex (R00ðxÞ > 0), as it is easy to verify. Furthermore, it would correspond to a decreasing interaction func-
tion FðrÞ ¼ r�Df ð1�dÞ exp �qrd�Df

� �
, which may be read as the r�c function damped by a decreasing exponential. For d ¼ 1 we

have the particular case FðrÞ ¼ expð�qrDf Þ. Finally, let us consider the Wheldon model [15] in which RðxÞ ¼ �wþ a=ð1þ bxÞ,
which, not surprisingly, is found to be convex (R00ðxÞ > 0) and which, as it is easy to verify, is related to the inhibition function
FðrÞ ¼ 1=ð1þ b̂rDf Þ2.
10. Concluding remarks

Our extension of [2], aimed to stress the role of the cell–cell interactions, neglects important phenomena and may be
further extended to model them. For example, the interaction with the microenvironment may be encoded in the parameters
G and J, either as noisy fluctuations or as deterministic dependence on new state variables (e.g. the density of blood
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microvessels). Some extensions might be less trivial, e.g. introducing subpopulations of quiescent and necrotic cells. This
extension would be important in order to relax the basic hypothesis [2] of a sufficiently high level of nutrients, and to include
the Gompertz law and the power law growth in a more robust way.
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