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Abstract

In this paper, we study the mathematical properties of a family of models of Eukaryotic cell cycle,
which extend the qualitative model proposed by Tyson [Proc. Natl. Acad. Sci. 88 (1991) 7328–7332].
By means of some recent results in the theory of Lienard’s systems, conditions for the uniqueness of
the limit cycle and on the global asymptotic stability of the unique equilibrium (idest of the arrest of
the cell division) are given.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction and main results

“As highly organized units in a universe favoring disorder, cells are subject to wear and
tear as well as to accidents. Any individual cell is therefore bound to die. If an organism is
to continue to live, it must create new cells at a rate as faster than the rate at which its cells
die. For this reason, cell division is central to the life of all organisms”[1].

“The periodic repetition of certain events—DNA synthesis, mitosis and cytokinesis—that
transform a single cell into two daughter cells”[2] is called cell cycle (CC)[3].

“Major events of the cell cycle... are regulated by a complex network of protein interac-
tions that control the activities of cyclin-dependent kinases”[4,1]. This and other cell-related
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biochemical dynamical interplays[3] may be modeled well by means of nonlinear ordinary
or impulsive differential equations[5–7].

Since the early 1990s, many interesting models of the control of cell cycle have been
proposed (see[2,4,8–23]and references therein). Some of these models are low dimensional
and qualitative, other (mainly the more recent) are more realistic by far but they are high
dimensional and are difficult or approximately analytical analysis. Note that the increasing
complexity of recent models reflects the progressive discovery of proteins involved in the
regulation of the CC[21].

Following Okubo[24], we may classify all bio-mathematical models in general (and
the models of the CC, in particular) as educational qualitative or practical realistic. The
former are simple and formulated by isolating and idealizing some essential features of
the biological phenomenon in study, but their outputmaybe divorced from the reality.
However, their “real virtue... lies rather in the fact that they provide a process for gaining
insight, expressing ideas, and eventually extending to more complex models”[24].

In this paper, we will study the mathematical properties of a pioneering qualitative model
of the regulation mechanism of the mitotic cycle proposed by Tyson[9]. This model has
had and has a great role in the above said process of gaining insight into the phenomenon
of cell division cycle.

The model in[9] is biologically based on the fact that the mitotic cycle appears to be con-
trolled by the activity of an enzyme[3] called maturation promotion factor (MPF), which
is an heterodimer composed of Cyclin and the protein kynase Cdc2: P-Cyclin-Cdc2. By
means of some drastic biological simplifications interplay between Cyclin and Cdc2 may
be described as follows: Cyclin and pre-existing phosphorylated Cdc2 (Cdc2-P) form inac-
tivated MPF: P-Cdc2-cyclin-P (referred as preMPF). PreMPF is activated autocatalytically
by MPF itself by dephosphorylation.At the transition Metaphase–Anaphase[3] MPF breaks
down releasing Cyclin-P and Cdc2, which, in turn, is then phosphorylated giving Cdc2-P,
etc. This simplified biochemical network, and the related model, may be considered as “a
reasonable ‘first approximation’ to the cell-cycle regulatory network”[9]. We will refer the
reader to that excellent work for further biological details and numerical simulations, but
we stress here that a global mathematical analysis of the above model seems to us not only a
mathematical exercise of some interest, but also and mainly a useful biological complement
to the inferences done in[9], which are based mainly on numerical simulations.

Recently in[25], an interesting mathematical analysis of the transient state local varia-
tional stability of Tyson’s model has been done by means of the KCC theory[26]. However,
in the present work, by means of the qualitative theory of planar dynamical systems and
by means of some novel results in the theory of Lienard’s equation, we shall try to find
global conditions such that the CC stops, conditions such that the cell may cycle and con-
ditions such that the cycle is unique and globally stable. Since we will use extensively the
theory of limit cycles and, more in particular, Lienard’s equation, two excellent sources of
information on these topics are the classical books by Farkas[28] and Zhang et al.[27].

This paper is organized as follows: in Section 2, we extend the model[9] by allowing a
more general function for the autocatalysis. In Section 3, we study the stability of the CC
arrest. Furthermore, we will show that the solutions are bounded and that, under simple
conditions, there is at least a limit cycle. We also state conditions for the uniqueness and
global stability of the CC. In Section 4, we return to the standard Tyson’s model and we
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apply to it the general theorems of Section 3. In particular, we find numerically a region, in
the space of the parameters, such that to each point of it there corresponds a unique globally
stable periodic solution. The final section is devoted to a short biological discussion of the
mathematical analysis done.

2. Definition of the family of models

In [9], Tyson proposed the following family of models of CC:

d

dt
u(t) = K4 × (v − u)K(u) − K6u,

d

dt
v(t) = K̂1 − K6u, (1)

where

• u(t) = [MPF]/[Total Cdc2]�0;
• v(t) = ([MPF] + [preMPF] + [Cyclin])/[Total Cdc2]. This implies, of course, that we

must have

v(t)�u(t). (2)

• All the parameters are positive. Biologically,K6 is the rate of dissociation of the active
MPF complex.

• K(u)>0 andK ′(u)>0 for u>0.

It is easy to see that constraintsu�0 andv�u are fulfilled naturally by (1) since the set

� = {(u, v)|u�0, v�u} (3)

is positively invariant for it. In[9], the particular case

K(u) = a + u2 (4)

(wherea = K̂4/K4) is examined, but it is explicitly remarked that formula (4) is “only
one of many possible ways to describe the autocatalytic feedback of the active MPF on its
own production”[9]. Therefore, here we examine the general family and we return to the
functional form (4) in the Section 4. We shortly note here that, whenK(u)= a + u2, K4 is
biologically the rate of autocatalytic activation of MPF.

Noting thatK(u)>0, instead of (1) we will study the following topologically equivalent
system:

u′(�) = v − v1(u),

v′(�) = c − u

�K(u)
, (5)

(in short notation(u, v)′ = A(u, v)) wherec = K̂1/K6, � = K4/K6 and

d�
dt

= K4 × K(u(t)). (6)
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Furthermore, the nullclinev′ = 0 is the vertical straight lineu = c, whereas the nullcline
u′ = 0 is given by

v1(u) = u + u

�K(u)
. (7)

The functionv1(u) has the following properties:

• u�v1(u)�(1 + 1/�K(0))u;
• For allm ∈ (1,1+ (�K(0))−1), the curvev = v1(u) intersects the curvev =mu in the

origin and in one another point.

We add the following reasonable constraint onv1(u): equationv′
1(u) = 0 has no solutions

or two, which we will calluM andum, with uM <um. In the light of the second property of
v1(u), this constraint is not excessively sharp. This may be seen as follows: let us define the
following function�(w) = E−wv1(E

w). It is easy to see that the equationv′
1(u) = 0, after

the transformationu = Ew, becomes�′(w) + �(w) = 0. If �(w) has only one inflection
point, as it happens whenK(u) has no inflection points and for many functionsK(u) having
only one inflection point, the equation has zero or two solutions. We stress here that also in
some cases in which�(w) has more than a single inflection points the equation has 0 or 2
solutions.

Now that the family is totally defined, we may pass to its analysis.

3. Qualitative properties of the solutions of family (5)

Family (5) has the unique equilibriumE=(c, v1(c)), to which corresponds the following
characteristic equation:

�2 + v′
1(c)� + 1

�K(c)
= 0. (8)

Note that the equilibrium value ofu is uE = c, which is inversely proportional to the
dissociation rateK6. It is easy to verify that

Proposition 3.1. If v′
1(c)>0 then E is LAS. IfuM and um exist anduM <c<um then

v′
1(c)<0 and E is unstable. Finally, if c <uM or c >um then E is LAS.

Remark. Note that whenE is unstable, the characteristic equation has two solutions real
and positive or having positive real part. SoE is never a saddle and, as a consequence,
homoclinic orbits are ruled out.

Proposition 3.2. If v′
1(u)>0 in R+ then E is GAS.

Proof. Since Div(u′, v′)=−v′
1(u), if v′

1(u) has constant sign there are no closed orbits and
E is also LAS, soEmust be GAS for the Poincare’ Bendixon’s trichotomy.�
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However important, the instability criterionuM <c<um of Proposition 3.1 does not
guarantee the existence of limit cycles, which is the main aim of a model of a periodical
phenomenon. In order to demonstrate the existence of such solutions we should find a
bounded invariant set.

Proposition 3.3. The set

� =
{
(u, v)|u�0, v�u, v�u + c

�K(0)
, v�c + c

�K(0)

}
(9)

is positively invariant and attractive for family(5).

Proof. Let us consider forq�(c/�K(0)), the following points:O = (0,0), Pq = (0, q),
Qq = (c, c + q), Rq = (c + q, c + q). The segmentsOPq , PqQq , QqRq , andQqO form
the border of a family of bounded sets, whose members are as follows:

�q =
{
(u, v)|u�0, v�u, v�u + q, v�c + q, q� c

�K(0)

}
. (10)

Thus� = �(c/�K(0)). Studying the flux of (5) on

��q = OPq ∪ PqQq ∪ QqRq ∪ QqO,

it is easy to see, via direct calculations, that in all points of��q the flux points towards the
interior of�q , which implies that each�q is positively invariant. For example, the flux on
PqQq , whose external normal vector isn= 2−0.5(−1,1), points towards the interior of�q

for all q�(c/�K(0)) because we haveA(u, v) ·n=−q + (c/�K(u)). Furthermore, since
the sets{�q}q� (c/�K(0)) cover allR2+ and are such that��q1 ∩ ��q2 = { } if q1 �= q2, and
since each set�q contains the equilibrium point, it follows that each�q is attractive. As a
consequence,� is also attractive as we claimed.�

From Propositions 3.1 and 3.3 it follows that

Proposition 3.4. If uM <c<um then in� there is at least one periodic solution.

Furthermore:

Proposition 3.5. If uM, um exist, then atc=uM and atc=um there are Hopf’s bifurcation.

Proof. Let �(c) and�∗(c) be the two complex conjugate eigenvalues atE, expressed in
function of the bifurcation parameterc. From Hopf’s bifurcation theory if forc = ch (in
our casech = uM or ch = um)R(�)|c=ch = 0 andR(�′)|c=ch �= 0 then atc = ch there is an
Hopf’s bifurcation. In our caseR(�′) = −v′′

1(c) which is not zero (uM �= um). �

We will study later the uniqueness and stability of the limit cycle.
We note that (5) is in non-translated Lienard’s Canonical form (non-translated since we

did not translate the state variables in order to have the origin as equilibrium point) and that
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eliminatingv one obtains the Lienard’s equation:

u′′ + v′
1(u)u

′ + u − c

�K(u)
= 0. (11)

The Lienard’s functionsf, g andF, and the Lienard’s potentialG are defined as follows:

f (u) = v′
1(u) ⇒ F(u) = v1(u) − v1(c), (12)

g(u) = u − c

�K(u)
⇒ G(u) =

∫ u

c

g(s)ds (13)

(note that whenv′
1(u) = 0 has two solutions,F is N-shaped).

Let us now callul the nontrivial solution of the equationv1(u) = v1(um) andur that of
v1(u) = v1(uM). Using these notations we have the following proportions.

Proposition 3.6. If c <ul <uM or c >ur >um then E is GAS.

Proof. If c <ul thenv1(um)> v1(c) ⇒ F(um)>0 and sign(F (u))= sign(u− c). Similar
considerations hold for the casec >ur . So, as in Corollary 2.3 of[31], using the Liapunov
functionW = G(u) + (v − v1(c))

2/2 and applying the LaSalle’s Theorem[33] it follows
easily thatE is GAS in�. �

This result may be further improved.

Proposition 3.7. Let um <c<ur . If G(ur)<G(ul) and∀s ∈ (c, ur) F (s) �= F(�+(s))
(where�+(s) = G−1(G(s)), s > c) then E is GAS.

Proof. Note firstly that whenG(ur)�G(ul), equationF(s)=F(�+(s)) has solutions. In
fact, we havesx < s� <ur , and alsoF(�+(sx))=0 andF(�+(s�))=F(uM). So because
of the continuity ofF(s) and ofF(�+(s)) there is asa ∈ (sx, s�) such thatF(sa) �=
F(�+(sa)). On the contrary, whenG(ur)<G(ul) the equationF(s) = F(�+(s)) may
have no solutions. In such a case, Lemma 9 of[30] holds (see also the equivalent Theorem
2.4 of [31]) and there are no closed orbits. As a consequence,E is GAS in�. �

A similar proposition holds forc ∈ (ul, uM). Summarizing:

Corollary 3.8. There is aûl ∈ [um, ur ] (ûl ∈ [ul, uM ]) such that ifc < ûl (c > ûr ) then E
is GAS.

Coming to the study of the uniqueness and stability of the limit cycle, currently to the
best of our knowledge there are essentially two possibilities of mathematical investigation.
(1) for u �= c the function(f (u)/g(u))′ is positive so that the Zhang’s theorem[29] can be
applied. (2) Another feasible alternate is Theorem 2.6 of[31], which summarizes Theorems
1 and 4 of[30], and which-in our case-reads as follows:
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Proposition 3.9(Zeng et al.[30] , Xiao and Zhang[31]). If

G(uM)�G(u1)�G(u2) (14)

(whereu2 <c<u1 are such thatF(u1)=F(u2)=0)and the functionQ(u) := F(u)f (u)/

g(u) (orQ(u) := f (u)/g(u)) is such that

Q′(u)�0 for u�u1, (15)

then(5) has at most one limit cycle and it is stable.

If follows that

Corollary 3.10. If by means of some(present or future) theorem one can establish the
uniqueness and local stability of a limit cycle of(5), then from Proposition3.4 it follows
that this unique limit cycle is also GAS.

Remark. We stress that the authors of[30] studied the Lienard’s systemx′ = y − F(x),
y′=−g(x) in a rectangular domain[x1, x2]×[y1, y2]. However, the constraint−∞�y1<y

<y2� + ∞ is never used, directly or indirectly, in the demonstrations of the theorems we
used here (and in the related lemmas, of course). In other and rough words, the “rectangul-
arity” does not play an essential role. Thus theorems and lemmas of[30] may be as well
applied—as we did—in case of domains of the following type:{(x, y)|x1�x�x2 AND
	(x)�y�
(x)}, where	(x) and 
(x) are continuous functions. Another more trivial
difference is that we used an non-translated form of the Lienard’s system.

4. Applications to Tyson’s specific model

In this section, we will apply the generic propositions of the previous section to Tyson’s
model.

For this model it is:

v1(u) = u + u

�(a + u2)
, (16)

f (u) = v′
1(u) = �u4 + (2a� − 1)u2 + a(a� + 1)

�(a + u2)2
⇒ F(u) = v1(u) − v1(c)

= u + u

�(a + u2)
− c − c

�(a + c2)
, (17)

g(u) = u − c

�(a + u2)
⇒ G(u)

= 1

2�
log

(
a + u2

a + c2

)
+ c

�
√
a

(
arctan

(
c√
a

)
− arctan

(
u√
a

))
, (18)

where, as we have mentioneda = K̂4/K4, c = K̂1/K6 and� = K4/K6.
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Remark. In [9], the following estimates are given:K4 ∈ (10,1000), K6 ∈ (0.1,10),
K̂1 = 0.015 andK̂4 = 0.018. The measure unit is min−1.

Proposition 3.2 is now:

Proposition 4.1. If 1 − 8a�<0 (i.e., if K6<8K̂4) then E is GAS.

Proof. The numerator off (u) is the bi-quadratic polynomial�u4+(2a�−1)u2+a(a�+1)
whose discriminant is 1− 8a�. Thus, if 1− 8a�<0 thenf (u)>0. �

By using the above estimates, ifK6<0.144 there is globally stable cell arrest.
For 1− 8a�>0, the equationf (u) = 0 has 4 roots (of which only two are positive):

uM(a,�) =
√

1 − 2a� −√
1 − 8a�

2�
, ûM = −uM , (19)

um(a,�) =
√

1 − 2a� +√
1 − 8a�

2�
, ûm = −um. (20)

Proposition 3.4 on the existence of the limit cycle is now:

Proposition 4.2. If uM(a,�)< c<um(a,�), i.e., if

K3
6

2K̂1
2

1 − 2
K̂4

K6
−
√

1 − 8
K̂4

K6

= L(K6)<K4<H(K6)

= K3
6

2K̂1
2

1 − 2
K̂4

K6
+
√

1 − 8
K̂4

K6

 , (21)

then there is at least a limit cycle in�.

When using the values in[9], the regionR={(K6,K4)|L(K6)�K4�H(K6)}) such that
there is at least a periodic solution is showed inFig. 1. Since the maximum value estimated
of K4 is 1000 and the minimum is 10, it follows that forK6�3.5 and forK6�0.16 there
is no stable limit cycle (in theory, there might be a limit cycle surrounded by two unstable
cycles) andE is (at least) LAS.

For which regards the Hopf’s bifurcations, the following holds:

Proposition 4.3. AtK4 = L(K6) and atK4 = H(K6) the characteristic equation has two
imaginary roots. For constantK6, assumingK4 as bifurcation parameter, if c3 �= 3a then
there is an Hopf’s bifurcation with stable arising cycle. For constantK4, assumingK6 as
bifurcation parameter, if c2 �= (1 + 2/

√
3)� there is an Hopf’s bifurcation with stable

arising cycle.
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Fig. 1. Plots ofL(K6) andH(K6). High: plot of both curves. In gray is plotted the RegionR such that there is
at least one limit cycle (andE is unstable). Low: zoom for low values ofK6. Since[9] K4 ∈ (10,1000), for
K6�3.50 and forK6�0.16 there is no unique limit cycle andE is (at least) locally stable.

Proof. The relationc3 �= 3a (c2 �= (1 + 2/
√

3)�) is obtained by imposing the non nullity
of (�f/�K4)(c) ((�f/�K6)(c)). Following Guckenheimer and Holmes[32], we reduced
for K4 = L(K6) system (1) (withK(u) = a + u2) to the standard form (3.4.10) of[32].
Hence, we calculated symbolically the formula (3.4.11) of[32]. Then, we repeated the same
calculations forK4 = H(K6). We obtained, of course, two different functions for the two
different cases. However, the sign of both of them was ruled by the same expression:

� = −8(a�)2 − (1 − 8a�) − (1 − 4a�)
√

1 − 8a�. (22)
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When(a�) ∈ (0, 1
8], � is negative, being the sum of three negative quantities. Thus the

cycles arising are stable in both cases.�

For which regards the uniqueness and GAS of the limit cycle, the region� in which
Proposition 3.9 holds must be a subset of the setR = {(K6,K4)|L(K6)�K4�H(K6)}.
However, inequalities (14) cannot be solved analytically, so the set� has been calculated
numerically by using Mathematica 4.0 (TM). This software has also been used to assess if
given a pointp ∈ � it is Q(u) is non-decreasing foru>u1 (condition (15)). This task has
been quite easy sinceQ′(u)=P7(u)/(�(a+c2)(a+u2)3), whereP7(u) is a seventh degree
polynomial with positive coefficient foru7. So, for a given pair(K6,K4), if ũ denotes the
maximum positive root ofP7(u) and ũ < u1, thenQ(u) is non-decreasing foru>u1. It
follows that in� Q′(u)>0 for u>u1. So both conditions of Theorem 3.9 are fulfilled.
The result of our calculation is that the region� is considerably smaller thanR (seeFig.
2), which is a consequence of the nature of the sharp condition (14). However,� is not
neglectable, since it contains a significant part of the set[0.1,10] × [10,1000].

Finally, since after some algebras it turns out that

ul = uM(a,�)
1 −√

1 − 8a�

1 +√
1 − 8a�

= uM

(
K̂4

K4
,
K4

K6

)
1 −

√
1 − 8K̂4

K6

1 +
√

1 − 8K̂4
K6

(23)

and

ur = um(a,�)
1 +√

1 − 8a�

1 −√
1 − 8a�

= um

(
K̂4

K4
,
K4

K6

)
1 +

√
1 − 8K̂4

K6

1 −
√

1 − 8K̂4
K6

, (24)

it is easy to see that Proposition 3.6 becomes

Proposition 4.4. If

K4<A(K6)=L(K6)
1−√1−8a�

1+√1−8a�
or K4>B(K6)=H(K6)

1+√1−8a�

1−√1−8a�
, (25)

then E is GAS.

By using Tyson’s values for̂K1 andK̂4, we obtained thatA(K6) decreases very quickly
also for small values ofK6, whereasB(K6) for small K6 has biologically meaningful
values, as depicted inFig. 3. In reality, by applying Theorem 3.7, it is possible to find a
larger region to which it corresponds a GAS equilibrium. For example, forK6 ∈ (0.3,3.50)
andK4<L(K6), the GAS region found is equal to the LAS region, whereas forK4>H(K6)

the GAS zone is considerable, but smaller than the LAS region as inFig. 4

5. Summary and biological discussion

For the general family (1), a positively invariant set has been detected, surrounding the
unique equilibrium point. As a consequence, when the equilibrium is unstable there is at
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Fig. 2. High: Region� which guarantees the existence and uniqueness of a GAS limit cycle. Low: comparisons
between the above figure and the regionR.
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Fig. 3. Plot ofB(K6), in gray the regionB(K6)<K4<1000 in which the criterion 3.6 is fulfilled andE is GAS.

Fig. 4. In the region in gray, obtained by applying the Theorem 3.7, the equilibrium pointE is GAS. In figure also
the curveK4 = H(K6) is plotted.

least one stable limit cycle. Biologically this means that in this case the cell cycles. We may
think the following take the three main configurations:

• There is an unique limit cycle, which must be GAS;
• There is one stable limit cycleLo and one or two unstable LCs, which, because of their

instability, are not physically observable: in the “real world” all the orbits will tend to
Lo. Roughly speaking, it is “as if” the system had an unique GAS LC;

• There may be two locally stable cycles (birhytmicity), or even more than two.
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The third case physically means that the periodic behavior of the cell division and, in
particular, the period may depend not only on the kinetic features (such as the parameters
�, c and the shape ofK(u)), but also on the initial abundance of the MPF and of the total
cyclin. Therefore, we gave also some general conditions which guarantee the uniqueness
of the cycle.

For the general family, we studied also the phenomenon of the cell cycle arrest. We
obtained two mathematical conditions which may be roughly summarized as follows:

• If v′
1(u)>0 then the equilibrium point is globally stable.

• If v′
1(u) has variable sign and ifc <uM or c >um then the cell cycle stops.

Biologically, remembering that the equilibrium value for the relative concentration of MPF
is ueq = c ∝ K−1

6 , we mayreadthe above conditions as follows:

• The possibility of cycling depends ultimately on the shape of autocatalytic function
K(u), since some classes ofK(u) resulting in positivev′

1(u) are not compatible with
the existence of periodic solutions.

• There is no cycle if the equilibrium value of the relative MPF concentration is excessively
low or high, i.e. if the dissociation rateK6 is excessively large or low.

Then we studied Tyson’s model.
The space of the positive parametersK4 andK6 is divided into two regions. Let us call

themR andQ = R2+ − R. In the setQ, E is at least LAS (but in large portions ofQ we
showed thatE is GAS). In allR, E is unstable and at least a stable LC exists. At the border
of R, Hopf’s bifurcations occur.

Biologically, and with reference toFig. 1, we may see that very low levels of autocatalyctic
activation rate does not allow the possibility of cycling, independent the value ofK6. Sym-
metrically, excessively low dissociation ratesK6 are not compatible with cycling, indepen-
dent the value of the activation rateK4. For intermediate values ofK6, there are two threshold
values forK4: L(K6) andH(K6). There is cell cycle only whenL(K6)�K4�H(K6). Nu-
merically, however, we showed that the higher threshold increases very quickly, so that only
the lower threshold for the activation rate is biologically meaningful.

Finally, we assessed the uniqueness and stability of the limit cycle, by using some recent
sufficient theorem and the numerical values given in[9].

We found a set� ⊂ R such that for allp ∈ � there corresponds a GAS limit cycle.
Since� was located by applying a strong sufficient condition,� is quite smaller than
R. However, we obtained that� lies in a biologically meaningful zone of the space of
parameters. Now less restrictive theorems on uniqueness of limit cycles could allow to
demonstrate the following conjecture: for allp ∈ R there corresponds a GAS limit cycle.

The assessment of the global stability of the cycle has an interesting biological meaning:
independent the initial concentrations of the chemicals, two cells having the same kinetic
parameters oscillate not only with the same period, but also with the same “law”. Further-
more, when there is a GAS limit cycle, in a cell also large random perturbations of the
concentrations do not destroy its normal behavior, since the orbit will tend to the same
limit cycle. On the contrary, if there are multiple coexisting limit cycles, their period and
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general dynamics would be a function of the initial concentrations. Starting point belonging
to different basins of attraction of different solutions would result in a different behavior. As
a consequence, a perturbation of the values of MPF, for example, might result in a different
cycle.

Summarizing, our analysis of the family and of the specific Tyson’s model seems to
indicate that

• Only perturbations in kinetic parameters may cause the arrest of the cell cycle.
• In the most complex case (i.e. coexistence of multiple LAS periodic orbits), variations

in the concentrations of the involved proteins may cause dramatic dynamical variations
to the cell cycle (e.g. a non-small variation of its period), but cannot stop it.
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