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Abstract

Blood vessels in vascularized tumours are in general irregular and often poorly effective.
However more ordered structures have been observed, where tumour cells that proliferate
around blood vessels form approximately cylindrical aggregates called tumour cords [1].
Tumour cords generally differ from each other in size and orientation, and may or may
not be surrounded by a necrotic region caused by oxygen and nutrients deprivation.

We review here some results of our studies on modelling tumour cords and their
response to anticancer agents [2]-[8]. To develop these models, we have taken the idealized
view of parallel, identical and regularly spaced blood vessels, as in the Krogh model of
microcirculation. The basic model, in cylindrical symmetry, can be briefly described as
follows.

Let r be the radial distance from the axis of the central vessel, r0 the vessel radius, ρN

the cord radius (let us suppose that the cord be surrounded by necrosis). Changes along
the axial coordinate are disregarded. The oxygen is considered the only critical nutrient,
and we assume that all cells die when its concentration falls to the threshold value σN . We
denote by νP , νQ, νN the volume fractions of proliferating (P ), quiescent (Q), and dead
cells respectively. u(r, t) denotes the (radially directed) velocity of the cellular component,
and σ(r, t) the oxygen concentration. We will assume νP + νQ + νN = ν?, ν? constant.
From the mass balance, we can write

∂νP

∂t
+ ∇ · (νP u) = χνP + γνQ − λνP − mP νP , (1)

∂νQ

∂t
+ ∇ · (νQ u) = −γνQ + λνP − mQνQ , (2)

∂νN

∂t
+ ∇ · (νN u) = mP νP + mQνQ − µNνN . (3)



In Eqs. (1)-(3) χ is the proliferation rate, and γ(σ) and λ(σ) are, respectively, the rates
of the transitions Q→P and P →Q. We suppose that γ and λ are nondecreasing and,
respectively, nonincreasing functions of σ. mP (r, t) and mQ(r, t) are the rates representing
the action of a therapeutic agent, µN is the degradation rate of dead cells into liquid. Since
ν? is assumed constant, we obtain for the cell velocity the equation:

ν?
∇ · u = χνP − µN (ν?

− νP − νQ) u(r0, t) = 0. (4)

The equation for σ is written assuming quasi-steady diffusion

∆σ = f(σ)(νP + νQ) , (5)

with the boundary condition σ(r
0
, t) = σb. f(σ) denotes the ratio between the consump-

tion rate per unit volume of live cells and the diffusion coefficient, and σb is the oxygen
blood concentration. At the interface r=ρN , we have two possible regimens:

u(ρN (t), t) > ρ̇N (t) , σ(ρN (t), t) = σN , (6)

u(ρN (t), t) = ρ̇N (t) , σ(ρN (t), t) ≥ σN . (7)

In both cases, we impose σr(ρN (t), t) = 0 according to the quasi-steady diffusion assump-
tion. Thus the motion of the interface takes place under two unilateral constraints. In
the absence of treatment, the system admits a unique stationary state.

The model has been applied to study the response of cords to various types of treat-
ment. In [6] the action of a cytotoxic drug has been considered. The function mP and
mQ were simply assigned as function of t mimicking the action of a bolus administration.
Numerical simulations of the model were able to predict the cellular response, and showed
the occurrence of an increased oxygenation after a single dose of drug with a possible re-
cruitment of quiescent cells into proliferation. If the drug is cycle-specific (i.e. mP > mQ),
this recruitment may traslate in a (transient) increase of the overall drug sensitivity of the
cell population. This suggests that if the dose is divided into two half doses administered
with a suitable time interval (dose splitting), the cell killing can be more effective than in
the response to the single undivided dose. To represent the effect of radiation, the model
was extended [8] to take into account the repair/misrepair process of the DNA double
strand breaks, according to the kinetic model proposed by Hlatky et al.(1994). In the
split-dose response, it was found that the reoxygenation caused by the cell death induced
by the first fraction may reduce the sparing effect of dose fractionation. The maximal
reduction is achieved when the second dose is delivered at the time of maximal reoxygena-
tion (the radiosensitivity of cells increases indeed as the oxygen concentration increases).
The prediction of the reoxygenation time course might thus be useful in determining the
optimal time of dose delivery.

The motion of extracellular fluids was incorporated in a more complete version of the
model [4, 5]. This motion may be important in the transport of blood-born therapeutic
agents of very high molecular weight. The Darcy law for the fluid flow was assumed,



and approximated equations for the longitudinal averages of the radial fluid velocity and
the pressure were derived. The model also provides a description of the dynamics of
the necrotic region, evidencing the different regimens implied by a solid- or liquid-like
character of the necrotic mass. The mathematical description of the fluid motion was
used to study the diffusive and convective transport of antibodies in tumour cords [7].
In this investigation, the bivalent binding of antibody to cell surface antigens was taken
into account, whereas the possible cytotoxic effect of the binding was not considered. The
model enlighted the role of parameters such as the hydraulic pressure in the vessels, the
vessel permeability, the hydraulic conductivities in the cord and the surrounding tissues,
the antibody binding affinity and the number of surface antigen molecules.
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