Lifting solutions of quasilinear convection dominated problems

J.A. Ferreira, A.P. Mouro, P. Oliveira
CMUC, Department of Mathematics
University of Coimbra, Portugal
ferreira@mat.uc.pt, apmouro@mat.uc.pt, poliveir@mat.uc.pt

Abstract
The steady state of the quasilinear convection-diffusion-reaction equation

\[u_t - \nabla (D(u) \nabla u) + b(u) \nabla u + c(u) = 0 \] \hspace{1cm} (1)

is studied.

Depending on the ratio between convection and diffusion coefficients, equation (1) ranges from parabolic to almost hyperbolic. From a numerical point of view two main difficulties can arise related with the existence of layers and/or the non smoothness of the coefficients.

In this talk we present a new numerical method for solving the steady state equation associated with (1). This method is based on the idea of solving an associated modified problem whose solution corresponds to a lifting of \(u \). The method introduced here avoids an a priori knowledge of the layer(s) location and allows an efficient handling of the lack of the smoothness of the coefficients. Numerical results are included.

Keywords: Convection dominated problem, layers, nonuniform meshes.

References

