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Abstract

The objectives of recent variational multiscale work in turbulence have been to capture
all scales consistently and to avoid use of eddy viscosities altogether. This holds the
promise of more accurate and efficient LES procedures. In this work, we describe a
new variational multiscale formulation, which makes considerable progress toward these
goals [1].
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1 Summary

We begin by taking the view that the decomposition into coarse and fine scales is exact. For
example, in the spectral case, the coarse-scale space consists of all Fourier modes beneath some
cut-off wave number and the fine-scale space consists of all remaining Fourier modes. Con-
sequently, the coarse-scale space has finite dimension whereas the fine-scale space is infinite
dimensional. The derivation of the coarse- and fine-scale equations proceeds, first, by substi-
tuting the split of the exact solution into coarse and fine scales into the Navier-Stokes equations,



then, second, by projecting this equation into the coarse- and fine-scale subspaces. The projec-
tion into coarse scales results in a finite dimensional system for the coarse-scale component of
the solution, which depends parametrically on the fine-scale component. In the spectral case,
in addition to the usual terms involving the coarse-scale component, only the cross-stress and
Reynolds-stress terms involve the fine-scale component. In the case of non-orthogonal bases,
even the linear terms give rise to coupling between coarse and fine scales. The coarse-scale
component plays an analogous role to the filtered field in the classical approach, but has the
advantage of avoiding all problems associated with homogeneity, commutativity, walls, com-
pressibility, etc. The projection into fine scales results in an infinite-dimensional system for the
fine-scale component of the solution, which depends parametrically on the coarse-scale com-
ponent. We also assume the cut-off wave number is sufficiently large that the philosophy of
LES is appropriate. For example, if there is a well-defined inertial sub-range, then we assume
the cut-off wave number resides somewhere within it. This assumption enables us to further
assume that the energy content in the fine scales is small compared with the coarse scales. This
turns out to be important in our efforts to analytically represent the solution of the fine-scale
equations. The strategy is to obtain approximate analytical expressions for the fine scales then
substitute them into the coarse-scale equations which are, in turn, solved numerically. If the
scale decomposition is performed in space and time, the only approximation in the procedure is
the representation of the fine-scale solution. To provide a framework for the fine-scale approx-
imation, we assume an infinite perturbation series expansion to treat the fine-scale nonlinear
term in the fine-scale equation. By virtue of the smallness of the fine scales, this expansion
is expected to converge rapidly under the circumstances described in many cases of practical
interest. The remaining part of the fine-scale Navier-Stokes system is the linearized operator
which is formally inverted through the use of a matrix Green’s function. The combination of
a perturbation series and Green’s function provides an exact formal solution of the fine-scale
Navier-Stokes equations. The driving force in these equations is the Navier-Stokes system
residual computed from the coarse scales. This expresses the intuitively obvious fact that if the
coarse scales constitute a good approximation to the solution of the problem, the coarse-scale
residual will be small and the resulting fine-scale solution will be small as well. This is the case
we have in mind and it provides a rational basis for assuming the perturbation series converges
rapidly. Note that one cannot use such an argument on the original problem because in this
case the perturbation series would almost definitely fail to converge. (If we could have used this
argument, we would have solved the Navier-Stokes equations analytically! Unfortunately, this
is not the case.) The formal solution of the fine-scale equations suggests various approximations
may be employed in practical problem solving. We are tempted to use the word “modeling”
because approximate analytical representations of the fine scales constitute the only approxima-
tion and hence may be thought of as the “modeling” component of the present approach, but we
want to emphasize that this is very different from classical modeling ideas which are dominated
by the addition of ad hoc eddy viscosities. We will present numerical results that demonstrate



that eddy-viscosity terms are unnecessary in the present circumstances. There are two aspects
to the approximation of the fine scales: 1) Approximation of the matrix Green’s function for
the linearized Navier-Stokes system; and 2) approximation of the nonlinearities represented
by the perturbation series. The first and obvious thought for the latter aspect, nonlinearity,
is to simply truncate the perturbation series. This idea is pursued in conjunction with some
simple approximations of the Green’s function. It turns out there is considerable experience in
local scaling approximations of the Green’s function based on the theory of stabilized methods;
Hughes [4], Hughes et al. [5], Hughes and Sangalli [6], Hughes, Scovazzi and Franca [7]. The
Green’s function is typically approximated by locally defined algebraic operators (i.e., the “τ ’s”
of stabilized methods) multiplied by local values of the coarse-scale residual.

An outline of the presentation is summarized as follows: we begin by presenting the math-
ematical details of the variational multiscale theory. This represents our general approach to
LES-style turbulence modeling and is independent of the specifics of the discrete spaces utilized
to represent the coarse scales. The relationship between this version of the variational multi-
scale method and classical stabilized methods is delineated. It is noted that that the variational
multiscale method includes additional terms. Both conceptually and from the point of view of
actual implementation, stabilized methods may be viewed as historical stepping stones leading
to the more coherent variational multiscale formulation. We then present our numerical studies
of forced isotropic turbulence at Reλ = 165 and Reλ = ∞. (Reλ is the Taylor microscale
Reynolds number.) We begin with a description of the approximation spaces consisting of
NURBS elements (non-uniform rational B-splines, see, e.g., Rogers [14], Piegl and Tiller [13],
Farin [3], and Cohen, Riesenfeld and Elber [2]). In the case of the rectilinear geometry con-
sidered, NURBS reduce to B-splines, which have been advocated for turbulence calculations
previously (see Kravchenko, Moin and Moser [8], Shariff and Moser [15], Kravchenko, Moin
and Shariff [9], and Kwok, Moser and Jiménez [10]). We employ trivariate linear, quadratic,
and cubic NURBS with periodic boundary conditions. Linear trivariate NURBS turn out to
be identical to trilinear hexahedral finite elements, but the higher-order NURBS are different
than classical higher-order finite elements. We perform a dispersion error analysis for NURBS
versus classical finite elements on simple, linear, one-dimensional advective and diffusive model
problems, and conclude that NURBS have better approximation properties than classical finite
elements. We employ meshes of 323, 643, 1283, and 2563 to explore convergence with mesh
refinement (h-convergence). We also examine the behavior of increasing order from linear to
cubic on fixed meshes (k-convergence). In the case of Reλ = 165, we compare with the DNS
spectral results of Langford and Moser [11]. Energy spectra and third-order structure functions
are presented. Sample energy spectra results are presented in Figure 1. In the case of Reλ = ∞
we also clearly see the development of an inertial subrange. We present results for turbulent
channel flows at Reτ = 395. (Reτ is the wall-friction Reynolds number.) We employ meshes of
323 and 643. This time the mesh is graded in the wall-normal direction to better capture the
boundary layer. Again, we consider convergence from the h- and k-refinement perspectives. A



striking result is how much better quadratic elements are than linear elements. For a mesh of
643, the quadratic and cubic results are essentially identical to the DNS results of Moser, Kim
and Mansour [12] for first- and second-order statistics (see Figure 2), and for a mesh of 323 they
are in close agreement. We close with conclusions and suggested future directions for research.
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(a) C0-continuous linear NURBS
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(b) C1-continuous quadratic NURBS
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(c) C2-continuous cubic NURBS

Figure 1: Energy spectra for h−refinement. Reλ = 165.
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(a) Mean stream-wise velocity
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(b) Velocity fluctuations

Figure 2: Turbulent channel flow at Reτ = 395 computed on a mesh of 643 elements: k-
refinement interpretation of results.


