

ERYTHROCYTE DEFORMABILITY IN A HYPERBOLIC MICROCHANNEL

Vera Faustino¹, Tomoko Yaginuma¹, Diana Pinho^{1,2}, Ricardo C. Calhelha^{3,4}, Isabel C.F.R. Ferreira⁴ and Rui Lima^{1,2}

¹ ESTiG, Polytechnic Institute of Bragança, Portugal ² CEFT, Faculdade de Engenharia, Universidade do Porto, Portugal ³ Centre of Chemistry, University of Minho, Portugal ⁴ CIMO/ESA, Polytechnic Institute of Braganca, Portugal

RBC – Highly deformable cell

- Important to deliver oxgen to the tissues throughout the body
- Reduced deformability associated with health problems (eg. anemia, diabetes)

Existing studies

- Major focus Effect of shear flow alone
 - > RBC filtration, laser diffraction ellipsometry, rheoscopy, etc.
- Use of straight channels

RBCs under Extensional Flows

Extensionally-domained flows often found in the human circulatory system

- \rightarrow A change in the cross-sectional area
- → Bifurcations
- → Stenosis major problem

in cardiovascular deseases

RBC deformability is important.

Shear stress & Extensional stress

Investigation of the RBC deformation in the both extensional and shear stress dominated flows in a low-aspect ratio hyperbolic microchannel

- Fabrication of Microchannel with Hyperbolic contraction
 - ✓ Geometory for ideal extensional flows
 - ✓ PDMS channel by Softlithography technique
- RBCs deformability measurement Defomation Index
 - Experiment set-up microscopy system with a high speed camera
 - Image analysis methodology suitable for deformation measurement

Microchannel

Dimensions

Depth = $14 \, \mu m$

Experimental set-up

Main components

Experimental parameters

Working fluid	Hank's Balanced Salt Solution (HBSS) containing 2% Hct of Human RBCs
Human RBCs size	≈ 8 µm
Flow rate	0.5µl/min
Frame rate	7500 frames/s

Three separate images and a combined view.

Image Analysis

Image filtering by ImageJ

1. Extraction of the cells of interest

Subtracted "Brightness adjustment"

2. Binarization

"Otsu thresholding"

3. RBC Measurement

Parameters: •Area •Circularity

MSPS 2012

Definition of DI

RBC Deformation Measurement

RBCs flowing near the centerline (y=0).

Average of DIs of all ROIs along the centerline.

Highly deformation in contraction region.

RBC Deformation

MSPS 2012

RBC Deformation by Flow Rates

DI increases with an increase of flow rate (Q).

MSPS 2012

RBC Deformation under the extensional and shear flows

- > Higher deformation in contraction region.
- DI increases substantially with the flow rate, at the contraction region.
- Qualitative analysis indicates stronger deformation in both extensional and shear flows than extensional or shear flow alone.

Acknowledgment

PTDC/SAU-BEB/108728/2008, PTDC/SAU-BEB/105650/2008, SFRH/BPD/68344/2010 and PTDC/SAU-ENB/116929/2010 from the FCT (Science and Technology Foundation), QREN, European Union (FEDER) and COMPETE, Portugal.

MSPS 2012

ERYTHROCYTE DEFORMABILITY IN A HYPERBOLIC MICROCHANNEL

Vera Faustino

vera_f_87@hotmail.com